
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2011-07-13

Naive Bayesian Spam Filters for Log File Analysis Naive Bayesian Spam Filters for Log File Analysis

Russel William Havens
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Havens, Russel William, "Naive Bayesian Spam Filters for Log File Analysis" (2011). Theses and
Dissertations. 2814.
https://scholarsarchive.byu.edu/etd/2814

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2814&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2814?utm_source=scholarsarchive.byu.edu%2Fetd%2F2814&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Naïve Bayesian Spam Filters

for Log File Analysis

Russel W. Havens

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Barry Lunt, Chair

Joseph J. Ekstrom

Chia-Chi Teng

School of Technology

Brigham Young University

August 2011

Copyright © 2011 Russel W. Havens

All Rights Reserved

www.manaraa.com

www.manaraa.com

ABSTRACT

Naïve Bayesian Spam Filters

for Log File Analysis

Russel W. Havens

School of Technology, BYU

Master of Science

As computer system usage grows in our world, system administrators need better visibility into

the workings of computer systems, especially when those systems have problems or go down.

Most system components, from hardware, through OS, to application server and application,

write log files of some sort, be it system-standardized logs such syslog or application specific

logs. These logs very often contain valuable clues to the nature of system problems and outages,

but their verbosity can make them difficult to utilize. Statistical data mining methods could help

in filtering and classifying log entries, but these tools are often out of the reach of administrators.

This research tests the effectiveness of three off-the-shelf Bayesian spam email filters

(SpamAssassin, SpamBayes and Bogofilter) for effectiveness as log entry classifiers. A simple

scoring system, the Filter Effectiveness Scale (FES), is proposed and used to compare these

filters. These filters are tested in three stages: 1) the filters were tested with the SpamAssassin

corpus, with various manipulations made to the messages, 2) the filters were tested for their

ability to differentiate two types of log entries taken from actual production systems, and 3) the

filters were trained on log entries from actual system outages and then tested on effectiveness for

finding similar outages via the log files.

For stage 1, messages were tested with normalized bodies, normalized headers and with each

sentence from each message body as a separate message with a standardized message. The

impact of each manipulation is presented. For stages 2 and 3, log entries were tested with digits

normalized to zeros, with words chained together to various lengths and one or all levels of word

chains used together. The impacts of these manipulations are presented.

In each of these stages, it was found that these widely available Bayesian content filters were

effective in differentiating log entries. Tables of correct match percentages or score graphs,

according to the nature of tests and numbers of entries are presented, are presented, and FES

scores are assigned to the filters according to the attributes impacting their effectiveness.

This research leads to the suggestion that simple, off-the-shelf Bayesian content filters can be

used to assist system administrators and log mining systems in sifting log entries to find entries

related to known conditions (for which there are example log entries), and to exclude outages

which are not related to specific known entry sets.

Keywords: Russel Havens, log file analysis, Bayesian content filter, spam filter, SpamAssassin,

SpamBayes, Bogofilter, filter effectiveness scale, fes

www.manaraa.com

www.manaraa.com

ACKNOWLEDGMENTS

 I wish to express my appreciation to my committee chair, Dr. Barry Lunt, who guided me

into the program and through the final painful process of writing and editing. I am also thankful

for Dr. Mike Miles, because of whom I was able to start the daunting writing task, and for Dr.

Dennis Eggett, who helped me overcome my fear of statistics and think analytically. I also wish

to thank my other committee members, Dr. Chia-Chi Teng, for helping me see what publication

is like and Dr. J Ekstrom for his zeal for learning and inspirationally creative ―wouldn’t that be

an interesting study‖ line of thinking. I am also grateful for Ruth Ann Lowe’s above-and-beyond

support through the bureaucratic minutiae of academic effort at a large university.

More personally, my good wife, Lisa, and my three children, Rachel, Catherine and

Daniel, have paid the highest price for this academic endeavor, and I am most grateful to them

for their support and sacrifice. I am thankful for parents and grandparents who love learning and

passed that love to me. Finally, I am grateful to Him from Whom all blessings come, my Father

in Heaven, and to Him through Whom all blessings become most meaningful, Jesus Christ.

www.manaraa.com

www.manaraa.com

 vii

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

1 Introduction ... 1

1.1 Log Analysis – Research Question ... 2

1.2 Bayesian Classifiers .. 3

1.3 Research Focus and Limitations ... 4

2 Literature Review ... 7

2.1 Logging ... 7

2.1.1 Log Files ... 7

2.1.2 Syslog .. 8

2.2 Syslog Analysis ... 12

2.2.1 Background Research ... 13

2.2.2 Syslog Analysis Tools and Products ... 16

2.3 Spam Control .. 17

2.3.1 Bayesian Spam Filtering ... 18

2.3.2 SpamAssassin ... 19

2.3.3 SpamBayes .. 20

2.3.4 Bogofilter .. 20

2.4 Summary ... 20

3 METHODOLOGY ... 23

3.1 Spam and Log Data Sources ... 23

3.2 Textual Analysis Methods and Clustering of Textual Data .. 25

3.2.1 Bayesian Filtering for Clustering .. 25

www.manaraa.com

 viii

3.3 Bayesian Filter Effectiveness Testing ... 28

3.3.1 SpamAssassin Corpus Testing .. 28

3.3.2 Contrived Short Entry Testing .. 28

3.3.3 Controlled Log Entry Testing ... 29

3.3.4 Full Log Entry Testing .. 30

3.4 Analysis of Comparisons and Correlation of Full Log Entry Tests with

Monitoring Outage Data ... 31

4 RESEARCH RESULTS ... 33

4.1 SpamAssassin Corpus Testing .. 33

4.1.1 Contrived Log Entry Testing .. 39

4.1.2 Actual Log Entry Testing and Outage Record Comparison 48

4.1.3 Research Results Summation .. 81

5 Summary and Future Work .. 85

5.1 Motivation ... 85

5.2 Work Summary ... 85

5.3 Recommendations and Future Work .. 87

References .. 91

Appendix. Program Code and templates ... 97

Spam Testing Programs and Scripts ... 97

shtrim.py ... 97

shtrim.body.template.txt ... 101

shtrim.header.template.txt ... 102

stestgen.py ... 102

gen-altered-list.py ... 106

train_sabs1.sh .. 107

train_sah1.sh ... 108

www.manaraa.com

 ix

train_sab1.sh ... 110

train_safull1.sh .. 111

test_sa1.sh ... 113

runset.sh .. 114

data_normalizer.py .. 115

fourthrun-analysis.R .. 118

randlines.py ... 122

l_train.py ... 126

l_test.py ... 131

l_salib.py ... 137

l_check_common.py ... 144

l_runtest.sh .. 145

matchrate.py .. 147

so-graphs.R ... 149

www.manaraa.com

www.manaraa.com

 xi

LIST OF TABLES

Table I - Facility Field Numeric Codes (RFC 3164) ...10

Table II - Severity Field Numeric codes (RFC 3164) ..10

Table III - Spam Corpus Testing Results ...38

Table IV - Actual Ham/Spam Split ..44

Table V - Detected Ham/Spam Split ...44

Table VI - Filter Score Statistics by Filter ...44

Table VII - Test Results Sorted by Correctness ...46

Table VIII - Logistic Regression Results...47

Table IX - Fall Data SpamAssassin Scores ...71

www.manaraa.com

www.manaraa.com

 xiii

LIST OF FIGURES

Figure 1 - Spam Testing Flowchart ...34

Figure 2 - Sample kernel/Spam Log Entries ..39

Figure 3 - Sample dhclient/Ham Log Entries ..39

Figure 4 - Trivial Log File Testing Flow ...42

Figure 5 - SpamAssassin 3-Chain Score Histogram ..43

Figure 6 - Full Log Testing Flow ...50

Figure 7 - Simulated Graph of Scores from a Perfectly Effective Filter52

Figure 8 - Simulated Graph of Scores from a Perfectly Ineffective Filter54

Figure 9 - SpamAssassin – App2, Chain-length 1, No Normalization, Marked56

Figure 10 - SpamBayes – App2, Chain-length 1, No Normalization, Marked57

Figure 11 - Bogofilter – App2, Chain-length 1, No Normalization, Marked . ..57

Figure 12 - SpamAssassin - App 1, Chain-length 1, No Normalization, Marked58

Figure 13 - SpamBayes - App1, Chain-length=1, No Normalization, Marked58

Figure 14 - Bogofilter - App1, Chain-length=1, No Normalization, Marked.......................59

Figure 15 - Jittered SpamAssassin, App2, Chain-length=1, No Normalization,

Marked ...61

Figure 16 - Jittered SpamAssassin, App1, Chain-length=1, No Normalization,

Marked ...62

Figure 17 - SpamAssassin (jittered) - App1, Chain-length=3, No Normalization

or Stacked Chain ..63

Figure 18 - SpamBayes - App1, Chain-length=3, No Normalization or Stacked

Chain. ...64

Figure 19 - Bogofilter - App1, Chain-length=3, No Normalization or Stacked

Chain . ..64

Figure 20 - SpamBayes - App1, Chain-length=3, No Stacked Chains, Numbers

Normalized ...65

www.manaraa.com

 xiv

Figure 21 - SpamBayes - App1, Chain-length=3, Stacked Chains, No Numbers

Normalized ...66

Figure 22 - SpamBayes - App1, Chain-length=3, Stacked Chains, Numbers

Normalized. ..66

Figure 23 - SpamAssassin (Jittered), Chain-length=1, 11/12 ..69

Figure 24 - Bogofilter, Chain-length=1, 11/12 ..70

Figure 25 - SpamBayes, Chain-length=1, 11/12 ..70

Figure 26 - SpamAssassin, Chain-length=1, 11/16 ...72

Figure 27 - Bogofilter, Chain-length=1, 11/16 ..72

Figure 28 - SpamBayes, Chain-length=1, 11/16 ..73

Figure 29 - SpamAssassin, Chain-length=1, 11/18 ...73

Figure 30 - Bogofilter, Chain-length=1, 11/18 ..74

Figure 31 - SpamBayes, Chain-length=1, 11/18 ..74

Figure 32 - SpamAssassin, Chain-length=1, 11/21 ...75

Figure 33 - Bogofilter, Chain-length=1, 11/21 ..75

Figure 34 - SpamBayes, Chain-length=1, 11/21 ..76

Figure 35 - SpamBayes, Chain-length=2, 11/16 ..78

Figure 36 - SpamBayes, Chain-length=2, Normalized Numbers, 11/1678

Figure 37 - SpamBayes, Chain-length=3, 11/16 ..79

Figure 38 - SpamBayes, Chain-length=3, Normalized Numbers, 11/1679

Figure 39 - SpamBayes, Chain-length=4, 11/16 ..80

Figure 40 - SpamBayes, Chain-length=4, Normalized Numbers, 11/1680

www.manaraa.com

1

1 INTRODUCTION

With the proliferation of computer technologies in the workplace, many organizations

have become more and more dependent on computers. Knowledge workers, accountants,

management, sales and marketing people, even line workers use computers every day to do their

jobs. Computers have become indispensable for many of these workers, and thus for their

organizations. When critical computer systems crash or have end-user impacting issues, these

employees often cannot do their jobs bringing in revenue and providing services. For many

organizations, this can add up to thousands to millions of dollars in revenue per hour depending

on the nature of the outage. To add insult to injury, the company still pays these workers to sit

around and wait for their tools to come back online. Downtime is expensive, so organizations

work hard to minimize it by preventing outages in the first place, or quickly mitigating the ones

that do happen. Even a few minutes less downtime per incident can add up to huge savings for

some organizations.

When computer administrators are working to troubleshoot an issue, some of their most

valuable assets are log files written by the hardware, operating systems and applications that

comprise the system. These log files often contain clues pointing to the nature of the problem

and give administrators insights into how the problem can be quickly resolved. Unfortunately,

even in a mid-sized computer data center, servers produce too many lines of logs for

administrators to read them all. Though these log entries often contain valuable troubleshooting

www.manaraa.com

2

information, the volume of entries means that they are generally only used for immediate

reactive troubleshooting and root cause analysis. If there were some way to quickly and easily

separate out log entries that warn of system problems, many problems could be more quickly

resolved and some may even be prevented.

1.1 Log Analysis – Research Question

Log analysis has been an active area of study for some time, with a number of approaches

being attempted with varying levels of success. Some of those approaches, filtering and data

clustering for example, have been commercialized while others have remained academic

research projects. One of the challenges many analytical approaches have is that while they can

be quite effective, they are complicated and not immediately usable outside the realm of the

statistically enlightened. These sorts of tools will eventually find their way into commercial or

open source products, but in the mean time, problems are occurring and valuable clues to those

problems are being ignored because of the vast number of log entries that obscure them.

This leads to the following research question: is it possible to find a widely available,

advanced filtering and data clustering technology that is useful for log analysis?

Because of the growth in unwanted e-mails, commonly called ―spam,‖ many spam filters,

such as Spam Assassin, SpamBayes and the like utilize naïve Bayesian content filters to

categorize e-mails as spam or non-spam. It is hypothesized that such filters can be trained to

differentiate system log entries, such as those produced through syslog or other systems, and that

the filtered log entries can be used to predict Linux and application problems.

For the purposes of this research, a log file is a system message file generated by a

server's firmware, operating system or application software. Log entries in these files often have

www.manaraa.com

3

minimal structure, which makes automated analysis challenging. One of the most common

logging systems is syslog, which was once a loosely defined de facto standard, but was

formalized considerably in IETF RFC 5424, as of March 2009 (Gerhards n.d.). Syslog entries

have traditionally comprised a date, severity (ranging from debug to critical), facility (indicating

the type of service, such as kernel, mail, clock, etc.) and usually a source system hostname and

program, though these were often omitted. RFC 5424 includes more useful information such as

hostname, app_id, msgid (indicating type of message), and a number of other useful values. As

this more formal standard is adopted by the various communities which use syslog, these records

will become easier to analyze and more useful for troubleshooting and problem detection.

Syslog is used by many Unix-like operating systems, including Linux, which is an open

source operating system, the kernel of which was written by Linus Torvalds in the early 1990's

(Torvalds n.d.). Linux makes use of many GNU tools, making it very Unix-like itself. It is quite

popular due to its flexibility, design simplicity, security and robustness.

Many applications also write log files of their own. Most often, these follow a structure

which is quite similar to that of Syslog messages, with a time-date stamp, severity, source

program name and message body.

1.2 Bayesian Classifiers

According to I. Rish, "Bayesian classifiers assign the most likely class to a given example

described by its feature vector" (Rish 2001). Making strong assumptions about the

independence of the classes simplifies the technique, making the classifier "naïve." Naïve

Bayesian spam filters use Bayesian classifiers to categorize e-mails as spam or non-spam. In

essence, one trains the filter by giving it spam and non-spam messages; the filter takes the

www.manaraa.com

4

likelihoods of the various words to appear in the two message types. Then, as other e-mails are

analyzed with the trained filter, the likelihoods of all the various words to be in the spam or non-

spam sets are combined using Bayesian methods, effectively combining the various probabilities.

This gives a richer classification than if the appearance of a single word threw the message into

the spam or non-spam category. Generally, the larger the training set and the greater the

coverage of terms from the messages to be analyzed, the more effective the filter will be.

SpamAssassin (Apache Foundation n.d.) is an open source e-mail spam analysis program

which includes Bayesian filtering and other analysis tools. It originated from work done by

Justin Mason and, earlier, Mark Jeftovic. It uses several techniques for detecting spam, one if

which is a Bayesian filter which can be trained by system users. SpamAssassin has an active

development community and a rich API which allows its functionality to be used in novel ways.

SpamBayes (SpamBayes n.d.) is an open source Bayesian spam filter which came out of

Paul Graham's ―A Plan for Spam‖ (Graham 2004) and Gary Robinson's subsequent suggestions

to improve Graham's original approach. It was introduced in the 2004 Conference on Email and

Spam (Meyer 2004). Its source code is available on SourceForge.

Bogofilter (Raymond n.d.) is another open source Bayesian spam filter, based, in part, on

the same research that spawned SpamBayes. Started by Eric Raymond in 2002, this project adds

further statistical tools to the Bayesian classifier, attempting to make the filter more effective for

spam filtering.

1.3 Research Focus and Limitations

This research will be limited to the use of these three filtering tools and Linux syslog

entries. These syslog entries will be collected from the computer systems of a large university

www.manaraa.com

5

and a mid-sized non-profit entity, so no inferences can be drawn beyond the original systems,

though the results of the analysis are nonetheless useful. Further, the outage data from the non-

profit’s monitoring systems will be used for comparison. Since monitoring can be rather uneven,

with some systems heavily monitored and others only lightly monitored, these data will be

simplified to a problem/no problem form and a time frame.

Again, though the statistical inferences are limited, the analysis is still useful. It brings

together a need common to most organizations’ IT departments with a technology which is well-

known in the industry. The integration work between the need and the solution is fairly simple,

requiring only a small amount of glue coding to be done. The post-run analysis code framework

is likely to be several times the length of the actual glue code.

www.manaraa.com

6

www.manaraa.com

7

2 LITERATURE REVIEW

2.1 Logging

2.1.1 Log Files

The computer is opaque to its users, including the very users who give the computer its

marching orders. After all, the inner workings of the computer are encoded as electrical pulses

in a myriad of circuits. Because humans cannot perceive the inner workings of computers, even

though those workings are the creation of humans, programmers have worked hard to make

those inner workings available to system users. The end-user of a computer system will see the

results of the inner workings of the system through the computer’s user interface, most

commonly in the form of a graphical user interface (GUI), but also commonly manifested as a

shell prompt or even as lights or ink on some sort of output device.

Often, however, the programmer or system administrator will want to understand what is

going on deeper inside the system, to understand the state of a program or set of programs which

are running in some way outside of the normal user interface to the system. One common way

of giving insight into the internals of a system is to print messages to an output device,

commonly the screen or to a file on a file system. Because displays are already in use with

output for an end-user, the file is usually the window of choice when a programmer wants to see

into a program. Writing a log of events to a file can provide extremely valuable insights into

www.manaraa.com

8

system operation, not only because of the insights into the variables and actions involved, but

also because of the timing of those variables and actions in relation one to another. Programmers

can use these log entries to gain insight into potential problems with the code; system

administrators can use the log entries to guide efforts of system management and

troubleshooting.

From the early days of computing, each programmer would write log entries out in his or

her own ways, and there was no real standard for log entries beyond writing them to a file. After

all, a word processor, a network driver, an operating system and a web server will have very

different logging needs. Generally, each programming project would standardize on a logging

framework and a set of conventions for what and how to send to log files. This standardization

makes log parsing much easier for a given system, and once programmers or administrators of a

given system become familiar with that system’s logging method and style, they can skim

through logs and find issues or areas of concern fairly quickly and easily.

2.1.2 Syslog

In the 1980’s, Eric Allman, creator of Sendmail, developed a logging standard called

syslog, also known as BSD Syslog because of its original ties to the BSD Unix distribution

(Lonvick, RFC 3164 n.d.). This standard includes not only a basic layout for a log entry, but a

remote protocol allowing syslog entries to be transmitted to logging servers and collected for

many devices. Syslog became the de facto standard for Unix and Linux systems and was

codified in the IETF’s RFC 3164 in 2001. In 2009, the IETF expanded and more clearly defined

the syslog protocol, moving from a protocol description document, RFC 3164, to a protocol

www.manaraa.com

9

definition document, RFC 5424 (Gerhards n.d.). Additional transport and security RFC

documents have also been produced since RFC 3164 (Lonvick, RFC 3164 n.d.).

The newest standard has yet to be widely adopted by the Internet community as of late

2010. The de facto standard, as documented in RFC 3614, provides a simple standard message

format, consisting of the following (encoded as 7-bit ASCII in an 8-bit encoding unless

otherwise specified).

2.1.2.1 PRI

The first section of the syslog payload is called the PRI. The PRI has 3 to 5 characters

which indicate the priority and facility of the log message. The first character is the left angle

bracket or less-than character. The next one to three decimal digits, collectively called Priority

value, comprise two fields, called Facility and Severity. The final character is the right angle

bracket or greater-than character.

The Facility field is a numerical code intended to represent the source of the message, as

shown in Table I.

www.manaraa.com

10

Table I - Facility Field Numeric Codes (RFC 3164)

Numerical Code Facility

0 user-level messages
1 kernel messages
2 mail system
3 system daemons
4 security/authorization messages
5 internal syslogd messages
6 line printer subsystem
7 network news subsystem
8 UUCP subsystem
9 clock daemon
10 Security/authorization message
11 FTP daemon
12 NTP subsystem
13 log audit
14 log alert
15 clock daemon
16 local use 0 (local0)
17 local use 1 (local1)
18 local use 2 (local2)
19 local use 3 (local3)
20 local use 4 (local4)
21 local use 5 (local5)
22 local use 6 (local6)
23 local use 7 (local7)

The next digit gives the severity code as shown in Table II.

Table II - Severity Field Numeric Codes (RFC 3164)

Numerical Code Severity

0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages

www.manaraa.com

11

The facilities codes are starting to show their age, as some of the facilities are no longer

widely used, and there is a distinct lack of flexibility in the priority-specifying system (in fact,

RFC3164 states that certain facilities are not ever used in practice). Still, the system is

sufficiently flexible and expressive to have been adopted by the vast majority of Linux and Unix

distributions.

2.1.2.2 Header

After the PRI is the HEADER. The HEADER contains a timestamp, in the ―Mmm dd

hh:mm:ss‖ format, where ―Mmm‖ is a 3-character month name abbreviation, based on US

English month names. After a single space separator, the header then contains the host name of

the origination system. The host name field may contain the IP address of the host if the host has

no host name.

2.1.2.3 MSG

The remainder of the syslog packet contains the TAG and CONTENT fields. The TAG

field specifies the source program and is delimited, most commonly, by a colon (―:‖), left square

bracket (―[―) or space (― ―) character. The CONTENT field is the log message, made up of

ASCII characters. Most early implementations allowed up to 1,024 characters in the CONTENT

field. The MSG, and particularly the CONTENT portion, is notoriously free-formed. It is not

uncommon for applications to omit the TAG. The CONTENT field is not structured beyond the

use of ASCII and the common length limitation, though individual projects and programs tend to

use common conventions within that specific project.

www.manaraa.com

12

2.1.2.4 Network Transport

For network transport, syslog messages are sent over UDP/IP, using UDP port 514.

Since these log entries are system messages, speed and simplicity was considered more

important than the delivery guarantee that TCP/IP promises. Some loss was considered

acceptable as trade-off for simplicity and speed. Using UDP also allows packets to be sent to

target hosts regardless of whether that host is up or down – separating the status of the sender

from the status of the receiver (otherwise, the sender would receive TCP timeout errors when the

target is down and would have to implement more complicated message handling). With the

much greater speed and reliability of modern networks, many administrators prefer to transport

these packets over TCP/IP; IETF RFC 3195 addresses this transport usage (IETF n.d.).

The syslog protocol and its protocol handlers also include the ability to relay messages.

This allows arbitrarily complicated hierarchies of loggers to be assembled, allowing even very

large, very diverse and very distributed computer systems to utilize the protocol for logging.

2.2 Syslog Analysis

Because of its flexibility, many applications, operating systems and devices use the

syslog protocol. These log entries can then be easily consolidated to various log servers in an

organization. This popularity and ease of aggregation has given rise to syslog as a de facto

standard for enterprise logging, in spite of the notoriously loose structure of the CONTENT

portion of syslog messages. This has also given rise to many frustrations for system

administrators who would like to get more out of their syslog systems but are hindered by the

sheer volume of loosely structured records.

www.manaraa.com

13

Each field in the syslog packet provides useful information to a log analyst. This

research will focus largely on the application-specific CONTENT field, using the other syslog

fields in various support roles. The CONTENT field contains specific status information

concerning a given application or service on a host and, because of its infamously free-form

nature, requires more effort to analyze than other fields.

Log files can be a tremendous resource for programmers, system administrators and

system analysts. Because of the ease of integration and great power to aggregate logs, syslog is

particularly useful for systems integrators and administrators. Because so many applications,

operating systems and devices utilize syslog, a great deal of data can be easily collected for later

use. This is a very good thing for systems analysts, in the sense that system data can be collected

in a single place. However, the down side of this is that even small to moderate data centers can

generate millions of log entries per day. The sheer amount of data can overwhelm even the best-

intentioned administrators.

Because of the quantity of log data available, and the value of the information contained

in those logs, log analysis has been an area of ongoing study. Many researchers have applied

various statistical and visual data mining techniques to logs of various types with varying levels

of success.

2.2.1 Background Research

In 1996, Doug Hughes (Hughs 1996), then of Auburn University, described how they

were using various visualization tools for managing their systems and networks. One of the tools

discussed, tklogger, was used to decrease the noise in log files by visually dividing out the high

and low priority messages. Its grouping/clustering mechanism is not discussed. However, even

www.manaraa.com

14

this simple tool had proven itself useful to administrators, helping them to filter out less

important records.

In 2008, Wei Xu, et al, (Xu 2008) proposed analyzing source code for all possible log

output lines, then simplifying down that data set using Principle Components Analysis (PCA),

and finally mining console logs for these errors. Their sample system, a Hadoop file system, lent

itself to this sort of analysis, because it is open source and produces millions of lines of logs.

This is clearly a novel technique to determining which log entries are important and which are

not. Unfortunately, it is probably too limiting (due to required source code access) and too

knowledge-heavy (due to the need to extract every meaningful log statement from the source and

then apply a PCA transform to the data set) to be widely used without a large investment.

Companies selling large commercial log analysis tools (which have the most resources for such

projects) are unlikely to invest the required effort for a tool that cannot even be used on their own

proprietary code without revealing its internals, or which is tied to specific versions of software.

As the value of logs has become more visible, commercial and free systems have been

developed to generate notifications or to take automatic action based on log entries. There are

many tools with these sorts of capabilities, including Swatch (Swatch n.d.), Splunk (Splunk Inc.

n.d.), Quest Big Brother (Quest Software, LLC n.d.), Zenoss (Zenoss Inc. n.d.), Tivoli TEC

(IBM n.d.), Nagios (Nagios Enterprises, LLC n.d.), LogSurfer (Thompson n.d.) and the like.

These tools can be quite useful, but their automated analyses are generally simplistic at best,

usually limited to pattern matching. In order for a rule to be created, a domain expert must find

the pattern in the logs and create a matching rule. This makes initial setup costly and time-

consuming. However, once set up, these rule sets can be augmented so that their value increases

over time. Joseph Hellerstein, et al, (Hellerstein 2002) proposed using data mining techniques to

www.manaraa.com

15

find event bursts, periodic patterns and mutually dependent patterns in historical logs for the

purpose of generating correlation rules for automated real-time systems management and

intruder detection tools. Their techniques analyze historical data to automatically select patterns,

assisting an analyst in the creation of appropriate rules.

Risto Vaarandi (Vaarandi, Sec - A Lightweight Event Correlation Tool 2002) proposed a

lightweight event correlation engine, called SEC, which uses pattern matching rules. Vaarandi’s

2003 paper, ―A Clustering Algorithm for Mining Patterns from Event Logs‖ (Vaarandi, A Data

Clustering Algorithm for Mining Patterns from Event Logs 2003) introduced an enhanced log

correlation engine, called SLCT.

In 2004, John Stearly (Stearly 2004), of Sandia National Labs, described a system to

analyze syslogs using a bioinformatics-inspired algorithm for detecting anomalies in large

volumes of log data. The Sisyphus toolkit which he developed utilized an IBM-developed

pattern discovery algorithm, called Teiresias (Rigoutsos 1998), which was originally used for

analyzing biological sequences. The technique compares well with previous techniques,

particularly the a priori-based techniques in SLCT and Loghound, though it is still only an

academic research project.

Another method of clustering event logs was used by Makanju, et al, (Makanju 2009) and

presented in 2009. Their technique, called IPLoM, or Iterative Partitioning Log Mining, divides

the set of log entries through a two or three stage iterative partitioning technique. This technique

slightly outperforms the SLCT, Loghound and Teiresius algorithms to which it was compared,

but, again, it is as yet an academic exercise and not widely available.

Gunter, et al, (Gunter 2007) analyzed syslog entries to manage complex middleware

running on a large Grid computing system. Their research concluded that no single type of

www.manaraa.com

16

statistical analysis they tried was optimal for all situations and that multiple analysis techniques

should be used.

In the introduction to his 2002 paper, Vaarandi points out that most tools for this sort of

correlation are large, complex, platform-dependent and expensive, and that these were

motivation for him to develop SEC. While there are more cross-platform, open-source and free

alternatives today, the playing field is quite full of complex, expensive commercial tools (some

of which were previously mentioned). This brings up an important point: if an analytical tool is

too expensive or complex, its value will be severely limited in the world of real use.

Administrators already have much to do and many budgetary constraints. They need financially

and intellectually approachable options.

Numerous log visualization techniques have been used as well (Aharon 2009) (Takada

2002) (Hochheiser 2001). This research will focus on simple, commonly available filtering

tools, for which filter scores and simple score vs. time scatterplots are quite effective

visualizations, and leave these more advanced visualizations for later research.

2.2.2 Syslog Analysis Tools and Products

As mentioned earlier, because syslogs are potentially valuable resources for many aspects

of system management, many tools have sprung up over the years for analyzing them. Many

tools exist for viewing, searching, filtering, parsing or managing logs. Some, like Microsoft’s

Log Parser (Microsoft Corp. n.d.) are simple log parsers and formatters. Others, like Apache

ChainSaw (Apache Foundation n.d.) and Octopussy (Thebert n.d.), provide viewers reporting

and alerting as well. Still others, Splunk (Splunk Inc. n.d.), XpoLog (XpoLog Ltd. n.d.), Novell

www.manaraa.com

17

Sentinel Log Manager (Novell, Inc. n.d.) and LiquidLabs LogScape (Liquidlabs n.d.), provide

log management, forwarding, viewing, searching, alerting and many other features.

In all cases, these tools provide, at most, simple visualization and query tools for filtering

through logs. Of the most popular tools on the market, only LogScape and Splunk provide

significant statistics for log entries, and those are limited to frequencies of matched entries and

other simple metrics. Statistical filtering of log entries is still a nascent area of concern in the log

management, and worthy of further investigation.

2.3 Spam Control

E-mail spam, or unsolicited, unwanted e-mail messages, is often considered the great

plague of the today’s information society. The International Telecommunications Union’s 2005

legal analysis of spam law put spam as 88% of e-mail that traverses the Internet (Bambauer

2005). Symantec, a major provider of anti-spam software, in May of 2009, put the figure at over

90% of all e-mails being spam (Ragan n.d.).

Because of the very high levels of activity in the spam world, a great deal of effort has

gone into battling the spam problem. Because spammers are actively trying to get through spam

filters, this has created a sort of arms race, with the see-saw tipping towards the spammers, then

the blockers, then the spammers, back and forth. One of the tools proven to be most useful for

the anti-spam forces has been the Bayesian spam filter, which is of particular importance to this

research. These filters are trained, and therefore can be quite resilient to variations in text as

presented by spammers. This resiliency should also make spam filters useful for filtering log

entries, which are generally similar, but rarely exactly the same across machines and over time

and software upgrades.

www.manaraa.com

18

2.3.1 Bayesian Spam Filtering

In 1998, Mehran Sahami, et al, (Sahami 1998) wrote a seminal article describing how

spam could be filtered using a Bayesian probabilistic classifier. This article proposed the use of

Bayesian probabilistic machine learning techniques on the then-new spam classification

problem. The article specifically suggested the use of the naive Bayesian classifier.

In 2002, Paul Graham’s (Graham 2004) similarly influential article entitled ―A Plan for

Spam‖ argued that it was possible to stop spam precisely because spam must convey a message,

and that a naïve Bayesian classifier, used in other areas of the field of text classification, could be

used to analyze that message. He posited that an effective filter could be created with a simple

algorithm just taking the probabilities of certain words and combining them with a simple

Bayesian calculation.

Since the actual text of a spam message must be of a certain type in order to convey its

message to the reader, text classification tools can be brought to bear on the message itself,

which must be there and must be plain enough to communicate its message to the recipient. Text

classification has many aspects, but the particular aspect on which this paper focuses is the

aspect of Bayesian classification, from the world of Bayesian statistics.

Although this is somewhat oversimplified, the statistics world is largely divided into two

major domains: Frequentist statistics and Bayesian statistics. The statistics most used today is of

the frequentist domain, which relies solely on the attributes of the data set to tease out patterns in

the data, requiring no previous knowledge of the data. Bayesian statistics, named after the 17th

century mathematician and minister Thomas Bayes, on the other hand, takes into account

previous experience and combines that knowledge with statistics from the data to make further

inferences.

www.manaraa.com

19

A Bayesian spam filter is a spam-oriented Bayesian content filter. It uses Bayesian

statistical theories to combine knowledge of previously categorized messages with analysis of

incoming messages, categorizing e-mails as spam or non-spam (Zdziarski 2005). (Non-spam

messages are also commoly known as ―ham.‖)

In essence, an administrator trains the filter by giving it a certain number of spam

messages, telling the filter that these are spam, and a similar number of ham messages, telling the

filter that these are ham. Once the training is completed, when the filter receives an e-mail, it

compares the words found in the mail message to the words in its two categories; it then

combines the probabilities of the new messages words with the probabilities of similar words in

the two categories and determines how likely it is that this message belongs in one category or

the other.

There are a number of email filtering products which implement various Bayesian

algorithms; some of these algorithms are not, technically, using Bayes’ theory, but all of them

are lumped together as Bayesian because of their similar properties. The best known of the open

source products is SpamAssassin (Apache Foundation n.d.). Two other well-known filters are

SpamBayes (SpamBayes n.d.) and Bogofilter (Raymond n.d.).

2.3.2 SpamAssassin

SpamAssassin is actually a very rich spam filtering tool which uses multiple techniques

to recognize and filter spam from a mail stream. One of its filters is the Bayesian filter.

SpamAssassin is very widely integrated into mail systems because of its rich API set and

open licensing. As part of the Apache umbrella, it is released under the very liberal Apache 2.0

license, which allows derivative works to be made and sold of it. It also comes with a rich Perl

www.manaraa.com

20

Mail:SpamAssassin:Conf API library, and thorough documentation on the web and in numerous

books.

2.3.3 SpamBayes

Tony Meyer and Brendon Whateley (Meyer 2004) took Paul Graham’s ―A Plan for

Spam‖ ideas and presented SpamBayes, written largely by Python’s Tim Peters, at the 2004

Conference on Email and Spam. They took the basic two-bin classification concept and

stretched it to a three-bin system, with an ―unsure‖ range. The SpamBayes mail classifier was

presented not as a solution unto itself, but as a test harness for ideas to show techniques which

might be useful for other engines. The use of Python as an implementation language, with its

emphasis on code readability, has allowed this tool to be accessible to other projects.

2.3.4 Bogofilter

The open source filter, Bogofilter, is based, in part, on the same research on which

SpamBayes was based. Started by Eric Raymond in 2002, this project also utilizes a geometric

mean algorithm with Fisher’s method modification from Gary Robinson (Raymond n.d.),

attempting to make the filter more effective. It is more similar to SpamAssassin than

SpamBayes in how it is trained and run.

2.4 Summary

In summary, attempts to monitor computer system activity for management and

troubleshooting have led to various analysis techniques. These analytical procedures require an

understanding of many topics, including logging, syslog, text classification and Bayesian content

www.manaraa.com

21

filtering. This background provides the basis for the methodology used in this current research

project, which entails using a Bayesian spam filter as a clustering tool for filtering problem-

related log entries from non-problem-related log entries. In particular, SpamAssassin,

SpamBayes and Bogofilter will be used, as the first is the most commonly used open source

spam filter, while the other two have been thought-leaders in the push to use Bayesian content

filters for attacking the spam problem.

www.manaraa.com

22

www.manaraa.com

23

3 METHODOLOGY

This research focuses on the novel application of well-known spam filtering tools to the

problem of filtering Linux syslog files. Syslog files, and application logs based on syslog

concepts, are notoriously loosely formed, which makes them difficult to classify: there is little

structure imposed upon them and even the structure which is imposed is loosely interpreted. A

message of Error level severity for one application might mean that there is an outage, while a

message with the same severity from another application may have no relation to an actual

service outage. Syslog is also known for producing copious output, with even mid-sized server

farms producing millions of lines of logging per day. This latter attribute may, oddly, actually

assist in the analysis of the data, since truly meaningful, outage-related data is sufficiently rare

that one needs a great deal of data "ore" in order to "mine" out the information "gold" found in

these files.

3.1 Spam and Log Data Sources

For this research, both spam and log data (syslog and application log) will need to be

utilized.

SpamAssassin, SpamBayes and Bogofilter all provide Bayesian content filters, which

will be used to separate problem-related entries from non-problem-related entries, in effect

filtering out some of the noise of uninteresting entries. As part of its offering, SpamAssassin

www.manaraa.com

24

has a well-tested, well-understood corpus of testing spam messages which can be used for testing

spam filters. This corpus will be utilized for the early stages of testing, using the messages,

initially, as-is for validating that the tools work as expected, then modifying the spam messages

to make them more similar to log entries, which tend to be much shorter.

Once the preliminary spam entry testing is completed, then a set of syslog entries with at

least some known failures will be utilized. Some arbitrary records will be used to build a simple

test bed of contrived data, allowing for some testing of log entries in a controlled manner. Then,

finally, actual entries will be used.

BYU's School of Technology provided 1 month of syslog entries, for use in the contrived

log entry differentiation testing. The syslog entries were filtered through the Bayesian content

filtering provided by SpamAssassin, SpamBayes and Bogofilter, differentiating the one

application’s entries from another application’s entries.

Actual application log entries from the non-profit FamilySearch.org web site were used

for the final log testing. These entries, while not syslog entries, are structured very similarly to

syslog. Two outage timeframes were be addressed: four actual outages from the Spring, which

have been determined to be similar by the site’s administrators, were tested for similarity,

randomly selecting one as the training outage. Then, four actual outages from the previous Fall

have been found by that site’s administrators, and that month’s copious log entries were thought

to be correlated with those outages. For this second set, the testing trained the filters with log

entries from the first outage and attempted to correlate those entries with the subsequent outages.

www.manaraa.com

25

3.2 Textual Analysis Methods and Clustering of Textual Data

As was discussed in the previous chapter, there are many techniques for analyzing text-

based data. The most common of these are the various methods of data clustering, in which

some sort of statistical distance metric (such as a matrix of word entries per row) is created for

each entry; then this metric is used to cluster or group similar text entries together. Clustering is

particularly useful for log analysis, as it mirrors what an administrator would do by grouping

related entries together, allowing for deeper analysis on the more interesting or relevant entries,

while the uninteresting or unrelated entries can be ignored. Reducing the "log entry noise" is

crucial for dealing with the vast amount of data generated by logging systems, and clustering

algorithms are ideal for this application.

3.2.1 Bayesian Filtering for Clustering

One particularly useful clustering technique is Bayesian content filtering (often called

BCF). It allows for the utilization of foreknown information, about the nature of entries, in the

analysis of successive entries. For this to work, the Bayesian filter must be "trained," or given

this foreknown information. The filter then uses what it learns from the training data and

combines it with data it discovers in subsequent entries, allowing it to differentiate those

subsequent entries.

3.2.1.1 Spam Abatement Tools Using Bayesian Filters

In the case of spam filtering, one trains the filter with known spam and known ham (or

non-spam messages). The filter calculates the rate of occurrence for various words found in

these messages in the two categories. Words like "mortgage" or "Viagra" or phrases like "call

www.manaraa.com

26

now" are likely to be found more commonly in spam than ham, whereas words and phrases like

"Mom" and "going home" are more likely to be found in ham. Words from subsequent messages

can then be compared to words in these categories, then their likelihoods of appearing in either

category can be combined using Bayesian methods, and the message can finally be categorized

as spam or ham. These kinds of filters, when trained properly, can be very effective.

Bayesian filters have their weaknesses, however. Such filters do not take into account

word order or other features which may be useful in recognizing patterns useful for categorizing

text. Additionally, as with many statistical tests, the more data that can be used for the training,

the more effective a filter can be made. This is an ongoing challenge, as interesting log events

can be quite rare, especially in small environments.

One statistical technique that has proven more effective has been the use of Hidden

Markov Models to capture some of the structure of a given entry. Taking a Spam-related

example, we can see that there is a difference between ―I refinanced my house today to save

some money‖ and ―Refinance today and save big money‖. A Bayesian filter would find

difficulty in differentiating these short sentences, but a Hidden Markov Model-based filter would

utilize word orders to differentiate them -- much as a human reader would.

Hidden Markov Model-based categorizers also have their own weaknesses, the two

largest being that they are complex to implement and, more importantly, they are

computationally expensive to utilize. One other weakness, and one important to an IT

administrator, is that they are not nearly as widely available nor as easily utilized as Bayesian

filters.

Log entries were modified and tested to simulate some features of Hidden Markov

Models with the Bayesian tools which were used for these tests. It was hoped that these

www.manaraa.com

27

modifications would make for better filter effectiveness while maintaining the high throughput

performance of the Bayesian filtering tools.

3.2.1.1.1 SpamAssassin

SpamAssassin has hundreds of tests for categorizing e-mail as spam or ham. An

effective Bayesian filter is included in this set of tests. SpamAssassin can be trained and utilized

via simple command-line tools, as long as the messages are provided in an e-mail format such as

Unix maibox or mbox. The intention in the log testing portions of this research is to wrap all log

entries in a common generic e-mail header and utilize the standard e-mail-based tools for training

and analyzing log entries. Because SpamAssassin runs many tests by default, and those tests are

unrelated to this research, only the Bayesian filter will be utilized for this set of tests.

3.2.1.1.2 SpamBayes

SpamBayes is a specialized tool providing only an effective Bayesian filter for spam

filtering. It is less well supported than SpamAssassin, but its Bayesian filter is better

documented and written in the very accessible Python language. Similar to the SpamAssassin

tests, SpamBayes’ e-mail-based tools will be utilized for training and analyzing log messages.

3.2.1.1.3 Bogofilter

Bogofilter is another commonly used Bayesian Spam filter. It uses similar training and

analyzing techniques to SpamAssassin and SpamBayes and will be utilized similarly.

www.manaraa.com

28

3.3 Bayesian Filter Effectiveness Testing

Each of these three filtering tools will be trained in various ways to understand their

effectiveness. Spam messages are considerably longer than log entries, which will likely impact

the effectiveness of Bayesian filters. More than this, problem-indicating log entries are quite rare

compared to the vast numbers of other log messages. Because of these two factors, the move

from spam to log entry tests will be made in steps.

3.3.1 SpamAssassin Corpus Testing

Initially, the SpamAssassin spam corpus will be used to test each tool. The effectiveness

of each tool will be noted. This should be straight-forward, as these tools were designed for the

purpose of differentiating these sorts of messages, and the messages will be in the correct format

for analysis.

3.3.2 Contrived Short Entry Testing

After the direct usage of the spam corpus, the messages of the SpamAssassin corpus will

be broken down into shorter entries, by sentence or line. Then the filters will be trained and used

again. All the same training set lines will be used, but in shorter form (i.e. there will be many

more short messages than before). This will measure the effectiveness of the filters as the length

of each message goes down. These data will provide insights into how the shorter lines of log

entries might affect the accuracy of the filter.

www.manaraa.com

29

3.3.3 Controlled Log Entry Testing

A small program will take each entry in a log file and create an mbox mailbox for

training the filters. Another small program will be used to then feed one entry at a time into the

filter to test whether it matches the problem-related set or the normal set.

For the first run, a known set of log entries will be chosen, such as all the possible entry

types for a subset of the data from a given pair of applications (e.g. named or sshd or dhcpd).

The rest of the data will then be categorized to determine if the filter can differentiate subsequent

entries from these two applications.

Many log entries include IP addresses, MAC addresses and other numerical values which

are specific to only a given message rather than to a class of messages. To determine if these

values were helpful or hurtful, these values were normalized to zeros for one set of tests, and left

as they were for another set of tests.

Because of the brevity of the log entries to be tested, a way to increase the data available

from a given message needed to be found. Additionally, it was also desirable to represent the

message structure somehow to the filters. In doing so, it was hoped that to the tests would gain

some of the benefit of a Hidden Markov Model filter, but with much lower computation cost

(Zdziarski 2005). This can be accomplished by ―chaining‖ the words in a message, which is also

called word-level n-gram creation in some research (Cavnar 1994). Adjacent words in a given

message were initially chained together with underscore characters. These chains were 1 (no

chaining), 2, 3, 4, 5, 7 and 9 word chains. For example, a line such as ―Now is the time for all‖

would give these tokens to the filter: T1:{Now, is, the, time, for} at a chain length of 1;

T2:{Now_is, is_the, the_time, time_for} at a chain length of 2; and T3:{Now_is_the, is_the_time,

the_time_for} at a chain length of 3, where TC is the set of tokens generated with chain length of

www.manaraa.com

30

C. For a message with L number of words, the number of tokens (Kc) generated at the level of

chain length C is:

KC = L - (C - 1) (1)

For a given chain length, two tests were then run. One run was tested with tokens TC

only from the highest level chain length C being trained and tested upon. The other test, called

―stacked-chains‖ in this paper, was run with all the tokens {T1, T2, … TC} from all chains up to

the length C being concatenated together and used for training and testing with the total number

of tokens:

C

i
iKK

1
 (2)

This process adds three variables: normalize-numbers at two levels (true and false),

chain-length at 7 levels (i.e. the numbers of words chained together) and stack-chains at two

levels (true with all chained word sets from 1 up to the specified chain length, and false with just

the highest order chained word set).

Adding these variables complicates the process, since logs must be pre-processed by

some tool, but overall processing time is not greatly impacted by number normalization or word

chaining. For 66 training records and 10,000 test records, impact was from 1.1% to 6.6%, the

latter being just 30ms for those 10,000 test records.

3.3.4 Full Log Entry Testing

Once the filters could differentiate the controlled log entry set effectively, then the filter

was retrained to look for specific log entries relating to system problems, and two sets of live

production logs were tested. For each set, one ―spam‖ set of log entries was selected from the

few minutes prior to, or immediately following, the initial outage. The matching ―ham‖ set of

www.manaraa.com

31

log entries were, in one case, randomly selected from the the rest of the lines in the log file, and

in the other, entries were randomly selected from the hour’s prior entries (keeping the ham/spam

entry sets approximately the same size), as the logs had been trimmed to just the bracket due to

their large number. The filter performance for each of these sets, and each of these tools, was

compared.

3.4 Analysis of Comparisons and Correlation of Full Log Entry Tests with Monitoring

Outage Data

The various tools, training techniques and data manipulations were compared by

graphing the scores of entries from each time period and comparing those graphs to the actual

time periods of each outage. These graphs were generated with R, a widely-used open-source

statistical analysis package, which makes such analyses quite straight-forward. The efficacy of

the technique was tested using one set of data, while the utility of the technique as a filter was

tested with the second set of data.

www.manaraa.com

32

www.manaraa.com

33

4 RESEARCH RESULTS

4.1 SpamAssassin Corpus Testing

Installing SpamAssassin, SpamBayes and Bogofilter was fairly straightforward on the

OpenSUSE 11.1 testing platform. Bogofilter, in particular, was already installed. SpamAssassin

and SpamBayes were also straightforward, the former being installable with the platform’s YaST

manager and the latter installable as a Python distutils package.

The SpamAssassin public corpus was downloadable from the SpamAssassin corpus

repository site at Apache.org (Apache Foundation n.d.).

Like many publicly available packages, this public corpus of emails includes a readme

file which describes its package contents like this:

OK, now onto the corpus description. It's split into three parts, as follows:

 - spam: 500 spam messages, all received from non-spam-trap sources.

 - easy_ham: 2500 non-spam messages. These are typically quite easy to

 differentiate from spam, since they frequently do not contain any spammish

 signatures (like HTML etc).

 - hard_ham: 250 non-spam messages which are closer in many respects to

 typical spam: use of HTML, unusual HTML markup, coloured text,

 "spammish-sounding" phrases etc.

 - easy_ham_2: 1400 non-spam messages. A more recent addition to the set.

 - spam_2: 1397 spam messages. Again, more recent.

Total count: 6047 messages, with about a 31% spam ratio.

www.manaraa.com

34

The corpora are prefixed with the date they were assembled. They are

compressed using "bzip2". The messages are named by a message number and their MD5

checksum.

(Apache Foundation n.d.)

Figure 1 - Spam Testing Flowchart

A simple flowchart of the work done is shown in Figure 1. The actual work went as

follows:

1. Extracted SpamAssassin Corpus files: The distribution file set was unpacked.

This was run once for the full suite of tests.

www.manaraa.com

35

2. Three modified versions of each spam e-mail were created: one with the headers

removed, another with body removed and a final one with headers removed and

the body split into multiple messages by sentence (using a period as a splitting

delimiter). These modified files were used for each type of training to determine

how much of the spam-vs. ham differentiable text is in the headers vs the body,

and if breaking the messages into small (log-like) pieces would make a difference

in the training. The unmodified messages were used for the testing of the filter.

The tools written for this were shtrim.py, shtrim.body.template.txt,

shtrim.header.template.txt, found in Appendix A (as is the case with all scripts

and programs mentioned here). This set of programs was run once per set for all

tests.

3. Created XX% sample files that list names of message files. This created files

with a naming convention of train_[h|sp]am_filelist_(xx%descriptor) and

test_[sp|h]am_filelist_(descriptor_100-xx%) for each sample-sized file. There

was a concern that the sample sizes might not sufficiently represent the variation

in the original data, so the stestgen.py and stestgen.properties files were run 5

times for each sampling size in order to get 5 random samples at each sample size.

4. Built out file lists appropriate for each type of manipulation (e.g.

train_ham_b_filelistX or train_spam_bsplit_filelistX). The script gen-altered-

list.py was used to build out appropriate files once per sample size set.

5. Those file lists and actual messages were used to train and test with each tool.

For this purpose, the scripts train_sabsplit1.sh, train_sah1.sh, train_sab1.sh,

train_safull1.sh and test_sa1.sh, with appropriate command-line parameters and

www.manaraa.com

36

automated with runset.sh, were created and run. This work was done once per

sample size set.

6. Those output files were manipulated into tab-separated files suitable for R

analysis using data_normalizer.py, then analyzed the data in R using fourthrun-

analysis.R.

This work turned out to be far more labor-intensive than originally thought, partially due

to the number of variables independently controlled for:

1. Three different spam filtering tools

a. SpamAssassin

b. SpamBayes

c. Bogofilter

2. Three different manipulations of the messages during training

a. Retain header data only (standardized body)

b. Retain body data only (standardized header)

c. Split body data into separate messages (each with standardized headers)

3. Five sample sizes

a. 10%

b. 5%

c. 1%

d. 0.5%

e. 0.1%

4. Five separate random samplings and associated runs

5. Spam-only runs vs Ham-only runs (allowing a determination of accuracy)

www.manaraa.com

37

Summarizing just the accuracy rates of all these runs concisely produced the data in

Table III. Since the actual message types are known, accuracy rates could be calculated. The 5

sampled runs for each combination were averaged to reduce and normalize the analyzed data.

www.manaraa.com

38

Table III - Spam Corpus Testing Results

Tool Manipulation Sample_size Percent_correct

spamassassin no_manipulation 5.00% 94.86
spamassassin header_removed 5.00% 94.38
spamassassin body_split 5.00% 94.38
spamassassin body_removed 5.00% 94.38
spamassassin header_removed 1.00% 92.54
spamassassin no_manipulation 1.00% 92.48
spamassassin body_split 1.00% 92.48
spamassassin body_removed 1.00% 92.48
spamassassin header_removed 0.50% 91.3
spamassassin body_removed 0.50% 91.28
spamassassin body_split 0.50% 91.26
spamassassin no_manipulation 0.50% 91.24
spamassassin no_manipulation 0.10% 90.82
spamassassin header_removed 0.10% 90.8
spamassassin body_removed 0.10% 90.8
Spamassassin body_split 0.10% 90.78
spambayes no_manipulation 5.00% 89.74
spambayes header_removed 5.00% 84.7
spambayes body_removed 5.00% 84.7
spambayes no_manipulation 1.00% 73.1
bogofilter no_manipulation 5.00% 69.6
spambayes header_removed 1.00% 68.64
spambayes body_removed 1.00% 68.64
spambayes no_manipulation 0.50% 63.64
bogofilter header_removed 5.00% 63.6
bogofilter body_split 5.00% 63.6
bogofilter body_removed 5.00% 63.6
spambayes header_removed 0.50% 58.84
spambayes body_removed 0.50% 58.84
bogofilter no_manipulation 1.00% 54.42
bogofilter header_removed 1.00% 51.22
bogofilter body_split 1.00% 51.22
bogofilter body_removed 1.00% 51.22
spambayes body_split 5.00% 50.0
spambayes body_split 1.00% 50.0
spambayes body_split 0.50% 50.0
spambayes body_split 0.10% 49.96
spambayes no_manipulation 0.10% 49.46
bogofilter no_manipulation 0.50% 49.18
spambayes header_removed 0.10% 49.06
spambayes body_removed 0.10% 49.06
bogofilter no_manipulation 0.10% 48.18
bogofilter header_removed 0.10% 47.0
bogofilter body_split 0.10% 47.0
bogofilter body_removed 0.10% 47.0
bogofilter header_removed 0.50% 45.12
bogofilter body_split 0.50% 45.12
bogofilter body_removed 0.50% 45.12

www.manaraa.com

39

4.1.1 Contrived Log Entry Testing

For a simplified log entry test, a corpus of syslog data received from Brigham Young

University School of Technology internal systems was used. This corpus contained 380,397

lines of log entries, most of which were dhcpd entries. Also in this corpus were 2356 lines from

dhclient and 1918 lines from the kernel. To train the filter, 25 sample messages were randomly

selected from the dhclient and kernel sets (using randlines.py), and these lines were used to train

the various filters, setting the kernel messages as spam and the dhclient messages as ham. These

lines were parsed so that only the body of each log line was used, discarding the date, server and

application name portions of the messages.

Figure 2 - Sample kernel/Spam Log Entries

Several sample kernel (spam) and dhclient (ham) lines are shown in Figure 2 and

Figure 3, with (addresses and server names modified to protect the innocent).

Figure 3 - Sample dhclient/Ham Log Entries

A combined file with all the dhclient lines and all the kernel lines was then tested, line by

line, against the trained filter.

www.manaraa.com

40

The following variables were controlled for independently:

1. Three different spam filtering tools

a. SpamAssassin

b. SpamBayes

c. Bogofilter

2. Numbers in log entries

a. Left as-is

b. Normalized to zeros

3. Words were chained together with underscores in order to retain some of the

structure of each line. Chains are formed by putting together adjacent words so

they form n-grams in the form of ―superwords‖: e.g. creating three word chains

from the phrase ―Now is the time for all good men to‖ would give ―Now_is_the

is_the_time the_time_for time_for_all for_all_good all_good_men

good_men_to‖. Initially, only odd numbers of words were used to reduce the

number of test runs (1, 3, 5, 7, 9), but 2 and 4 word chains were also run as there

appeared to be an inflection point in accuracy at the lower chain lengths:

a. 1 – no words were chained; the unmodified line was passed into the filter

b. 2 – two words chained (e.g. ―Now_is‖)

c. 3 – three word chains (e.g. ―Now_is_the‖)

d. 4 – four word chains (e.g. ―Now_is_the_time‖)

e. 5 – five word chains (e.g. ―Now_is_the_time_for‖)

f. 7 – seven word chains (e.g. ―Now_is_the_time_for_all_good‖)

g. 9 – nine word chains (e.g. ―Now_is_the_time_for_all_good_men_to‖)

www.manaraa.com

41

4. Chain stacking

a. Chains were stacked, meaning that lower order chains were retained in the

document used for training and testing. The same levels were used. (e.g.

for ―Now is the time for‖ at a 5 word chain, the output would include 4, 3,

2 and 1 word chains and be tested with the text ―Now_is_the_time_for

Now_is_the_time is_the_time_for Now_is_the is_the_time the_time_for

Now_is is_the the_time time_for Now is the time for‖)

b. Chains were not stacked, meaning that only the highest-order chain was

used for training and testing.

The output from the filters was parsed to give the score (in the case of SpamAssassin) or

the detected message type name and score (in the case of SpamBayes and Bogofilter).

Then the actual message types (kernel=spam, dhclient=ham) were prepended to each line.

SpamAssassin gives matches a numeric score. Because of the previous spam corpus

experience, a score of 3.0 and above was scored as ―spam‖ and below 3.0 as ―ham.‖ SpamBayes

reports ―Ham‖ and ―Spam‖ in addition to a 0 to 1-scale score. Bogofilter reports ―Ham,‖

―Spam‖ and ―Unknown‖ in addition to a 0 to 1-scale score. matchrate.py looks for these scores

and names and determines if the given name or score matched the actual message type, giving

counts for each file.

www.manaraa.com

42

Figure 4 - Trivial Log File Testing Flow

The straight-forward general flow for this trivial log file testing and is shown in Figure 4.

The programs used for this work, randlines.py, l_train.py, l_test.py, l_salib.py,

l_check_common.py, l_runtests.sh and matchrate.py are included in the appendix.

A histogram showing the SpamAssassin 3-chain score histogram is shown in Figure 5. It

shows the distinct bimodal distribution of scores expected from the set of both spam- and ham-

trained messages. The message recognition accuracy rates of the filters are also given below.

www.manaraa.com

43

Figure 5 - SpamAssassin 3-Chain Score Histogram

Analysis and manipulation of data was accomplished with custom Python scripts.

Statistical analysis was accomplished with R version 2.12.0 (2010-10-15) (R Development Core

Team n.d.) running under 32-bit Windows 7.

The output of these runs produced 358680 rows of data: one output row representing one

dhclient or kernel log entry with a unique set of each of the 4 variables.

The following tables will give an overview of the data. Table IV shows the actual

ham/spam split (i.e. the split of dhclient and kernel messages, per the syslog application field)

and Table V shows the detected ham/spam split (i.e. the split of dhclient and kernel messages,

per the filters’ detection). For reference, the basic statistics for the output scores from each filter

are shown in Table VI; as previously mentioned, SpamAssassin uses a floating scale, where it

was determined that a 3.0 or higher indicated spam, while SpamBayes and Bogofilter use scales

www.manaraa.com

44

from 0 to 1, where SpamBayes scores records with scores above 0.5 as likely to be spam and

Bogofilter records records with scores above 0.95 as likely to be spam. Note that although the

range of the SpamAssassin scores is nearly 5 times that of SpamBayes and Bogofilter, its

standard deviation is not quite 3 times as great; this could indicate that SpamAssassin tends to

score slightly strongly towards the ham or spam ends of its scale. Also note that means for both

SpamBayes and Bogofilter are slightly towards the ham end of the scores, while SpamAssassin

is slightly towards the spam end of the scores. The differences are fairly subtle, so a bit more

analysis would be required to definitively explain why this is the case.

Table IV - Actual Ham/Spam Split

Type Record Count

Ham 197791
Spam 160889

Table V - Detected Ham/Spam Split

Detected Type Record Count

Ham 139512
Spam 142796
Unsure 76399

Table VI - Filter Score Statistics by Filter

Statistic SpamAssassin SpamBayes Bogofilter

Min 0.80 0.00 0.00
Mean 3.09 0.47 0.48
Max 5.500 1.00 1.00
Standard Deviation 1.18 0.42 0.40

In addition to the Table VI filter statistics, note the following basic facts to get some idea

of the comparative sizes of data sets in the analysis.

www.manaraa.com

45

119560 records from each of the three filter tools

179340 records each of numbers normalized (true vs. false)

51240 records of each chain length (lengths: 1, 2, 3, 4, 5, 7, 9)

179340 records each of stacked chains (all chains up to the tested chain length used for

analysis vs. just the tested chain length)

A logical column was added to indicate whether the type and discovered type (the type as

detected by the filter) were the same for a given record. Two analyses were done with those

data: a simple table of successful match rates at given variable levels, and a logistic regression.

Table VII shows the table analysis. For this, the percentage of correctly identified

records for each unique unique filter, normalization, chain length and stacked value was

calculated. As can be seen in the table, SpamAssassin was the most accurate filter, especially

when using chains of 2 or 3 words—99.906% vs. 91.639%. SpamBayes, which was the next

most accurate filter, actually did slightly worse with chained words, 96.815% vs. 95.035%. The

same was true for the less-accurate Bogofilter, 92.435% vs. 90.984%. Stacked vs non-stacked

chains seemed to make almost no difference across the board. Normalized numbers did not

affect SpamAssassin or Bogofilter, but seems to have helped SpamBayes slightly.

A logistic regression was performed for a more rigorous statistical analysis by fitting a

model with the matched column (set to TRUE when type and discovered-type were the same) as

the dependent variable and the 4 other variables as independent. The model tested was: matched

~ filter_tool + normalized + chain_length + stacked_chains.

www.manaraa.com

46

Table VII - Test Results Sorted by Correctness

Filter Normalized
Chain
length

%
correct
(stacked)

 % correct (non-
stacked)

spamassassin false 3 99.906 99.906
spamassassin true 2 99.906 99.906
spamassassin true 3 99.836 99.836
spamassassin false 2 99.696 99.696
spambayes true 1 96.815 96.815
spambayes true 2 95.035 95.035
spambayes true 2 94.801 94.801
bogofilter false 1 92.436 92.436
bogofilter false 1 92.436 92.436
spamassassin true 1 91.639 91.616
bogofilter true 3 90.984 90.984
bogofilter false 3 90.984 90.984
bogofilter false 2 90.703 90.703
bogofilter true 2 90.703 90.703
spambayes false 1 90.703 90.703
spamassassin false 1 86.628 86.628
spamassassin true 5 86.136 86.089
spamassassin false 5 86.112 86.112
spamassassin true 4 86.112 86.112
spamassassin false 4 86.112 86.112
spambayes true 5 83.63 83.583
spambayes true 4 83.232 83.232
spambayes false 5 83.021 83.021
spambayes false 4 82.282 82.482
spamassassin true 7 81.546 81.522
spamassassin false 7 81.546 81.546
spambayes false 3 81.405 81.405
spambayes true 3 78.618 78.618
bogofilter false 4 77.049 77.049
bogofilter true 4 77.049 77.049
bogofilter true 5 72.248 72.248
bogofilter false 5 67.728 67.728
spambayes true 7 54.965 54.965
spambayes false 7 54.075 54.075
spamassassin true 9 44.965 44.988
spamassassin false 9 44.824 44.824
bogofilter true 7 20.937 20.937
bogofilter false 7 20.141 20.141
spambayes true 9 14.309 14.239
spambayes false 9 14.192 14.192
bogofilter true 9 5.691 5.691
bogofilter false 9 5.691 5.691

www.manaraa.com

47

Table VIII - Logistic Regression Results

Type
Coefficient
Estimate

Standard
Error

P-value

(Intercept) 3.2777149 0.0141475 < 2e-16
filter_tool_spamassassin 1.5810554 0.0123121 < 2e-16
filter_tool_spambayes 0.5601675 0.0109058 < 2e-16
normalized_true 0.0609702 0.0093141 5.91e-11
chain_length -0.5735802 0.0020611 < 2e-16
stacked_chainsTrue 0.0003469 0.0093129 0.97

As can be seen in this logistic regression, in Table VIII, stacked chains are not

statistically significant, while filter tool, chain length and normalized numbers are very

significant predictors of the correctness of the filter. This supports the thinking that the chosen

filter tool is important, particularly in showing that SpamAssassin is the most effective of the

filters. Chain length is significant, but its effect is negative, suggesting that longer chain lengths

are to be avoided. Normalized numbers are also significant.

The summary table, Table VII, shows, in particular, that filter type and chain length are

the most effective combinations of variables, as seen for SpamAssassin with word chains with a

length of 2 or 3 words. In the right combination, the filter scores at 99.906% effective in

correctly matching the test records to the trained record types. A chain length of 1 and no

number normalization, which is the ―untreated‖ data, only gets 86.628% correct. This makes for

a 13.278% improvement in differentiation for this log set.

SpamBayes does best with data that have only had numbers normalized, scoring 96.815%

correct; it fared only a bit worse with completely ―untreated‖ data, at 90.703%, the manipulation

making 4.112% improvement.

www.manaraa.com

48

Finally, it is interesting to note that Bogofilter does the same with completely ―untreated‖

data and data that have had numbers normalized, both scoring at 92.436%. All word chaining

was detrimental to this filter, so its ―untreated‖ data score was its best.

Bogofilter’s ―untreated‖ score was actually 5.808% better than the ―untreated‖ score from

SpamAssassin, and 1.733% better than the ―untreated‖ message score from SpamBayes. At its

best, SpamAssassin was 3.091% better than SpamBayes’ best score and 7.47% better than

Bogofilter’s best accuracy score. These sorts of differences can mean thousands or tens of

thousands of lines in the case of even relatively large log sets.

All of this suggests that there is not really a single way to treat data that is optimal for all

three filters, aside from the use of very short chains (of length 1 for both SpamBayes and

Bogofilter). These findings were useful for the next stage, where actual, non-trivial, log filtering

would be tested, with the full range of actual logs from a production application.

I suspect that the lack of differentiation from chain stacking is caused by the filters only

selecting the most ―interesting‖ words in the token set. This is a common defense against so

called ―word salad‖ spam where random words are placed in the message body.

4.1.2 Actual Log Entry Testing and Outage Record Comparison

Finding a corpus of log files for actual log entry testing turned out to be quite difficult.

Most organizations do not keep log entries for very long, often 7 days or less. Since outages for

any given server or service are a relatively rare occurrence, with any given server or service

failing perhaps once every month or two, finding problems within a given system’s log retention

window proved to be difficult. Finding outage records that repeat similar outages was even more

difficult.

www.manaraa.com

49

However, I had the great fortune of obtaining two sets of logs from the Family History

Department (FHD) of The Church of Jesus Christ of Latter-Day Saints (LDS Church) which runs

the FamilySearch.org web site. This department runs applications which reside on hundreds of

servers, each of which logs heavily.

For set one, four outages with similar symptoms occurred in late March, 2011.

Symptoms included a spike in network traffic and network errors, and eventually the shared

SAN-mounted filesystems gave errors and dismounted. Related entries were pushed to local

syslogs. The short-term solution was to restart networking or restart the affected server; the root

cause is as yet unknown as of this writing. The logs looked similar for the time frames, so these

logs were used to ask, ―Can the filters detect log entry similarities which are seen by an

administrator?‖

For the second set, in the November of 2010, FHD experienced four outages with similar

symptoms: thread starvation in the search application was associated with a cascading failure in a

search cluster. This cluster logged heavily and was set to retain logs for over a month. The lead

system manger from IT operations believed that these outages were all related, so this set of

outages became the other research target, with the prime question being, ―Are these outages in

fact related?‖

www.manaraa.com

50

Figure 6 - Full Log Testing Flow

The general flow chart for these analyses, including the looping iterations, can be seen in

Figure 6.

4.1.2.1 Spring Outage Syslog Analysis

To answer the question of whether the filters could be trained on log entries from one

outage and then detect other related outages from their log entries, the Spring 2011 outage

syslogs were used, as the relatedness of the outages was already determined by looking at the

logs.

www.manaraa.com

51

These outages occurred on two systems, three on app2 and one on app1, as the

application was moved from app2 to app1 and then back again in an attempt to rule out hardware

as the cause of the problem. App1’s syslog file contained 8,070 lines of syslog entries and

app2’s syslog file contained 30,555 lines. Time-wise, the app2 logs ran from Feb 27 04:02 to

Mar 31 22:26, and the app1 logs ran from Mar 13, 04:02 to Mar 31 22:29.

The documented outages occurred on March 18th, 23rd, 25th and 30th. The outage of the

25th was randomly selected from the set and used to train the filters. The original log files were

fed separately into the filters with all combinations of normalized numbers (true or false),

chained word lengths (1-5 words) and stacked chains (whether only the output of the specified

chain length was used, or all the chain lengths up to the specified length were included, or not).

The detected outage for the 25th started at 17:03 UTC and was not resolved until 18:11

UTC. (Syslog entries from these servers use UTC, the Coordinated Universal Time standard

from which world time is calculated, based on time at 0° longtitude.) All 30 lines of log entries

from that time frame were specified as spam for the filters; 31 lines taken randomly from the

remaining 30,525 lines of that log file were specified as ham for the filters, using randlines.py,

printed in the appendix. Bayesian filters are thrown off when the samples are of widely different

sizes; the one extra ham entry was a mistake when the sample was taken, and not discovered util

after the work had been done, but not considered a problem for the balance of the filter.

The logs were run through l_train.py and l_test.py (available in Appendix A – Program

code and Templates) using a small shell script to specify the variations used for testing (number

normalization, chain length and chain stacking), and to train and test them with all three filters

(SpamAssassin, SpamBayes and Bogofilter).

www.manaraa.com

52

Scatterplots were used in the analysis because they can compactly represent the tens of

thousands of numbers in the score output, and do so in a way which is intuitive for the pattern-

recognition skills of the human mind. The graphs are not perfect, as tens of thousands of values

must be squeezed into just 1200x1000 pixels, meaning that adjacent scores can be lost, visually.

To assist the graph viewer, the regression line and lowest smooth and smoothed conditional

spread were also fitted by the graph function chosen (scatterplot from the R ―car‖ package (Fox

2011)); these allow some of the larger patterns to be seen more easily on the various graphs.

Additionally, box-and-whisker plots were produced in the plot margin; these plots can give

additional insight into the data, as they show the distribution of the scores in each axis.

Figure 7 - Simulated Graph of Scores from a Perfectly Effective Filter

If the three filters were perfectly effective at recognizing outage-related records, then

records directly related to outages would have scores at the ―spam‖ level (e.g. 1 in SpamBayes or

www.manaraa.com

53

Bogofilter), and scores at the ―ham‖ level (e.g. 0 in SpamBayes or Bogofilter) for all other

records. In a hypothetical scenario of 1000 records, with 30 records each at 300 and 700, the

generated graph would look like the simulated values in Figure 7.

Note that vertical lines, used as a general visual guide to where the outages occurred,

were created with the R abline(v=300,col=‖red‖) and abline(v=700,col=‖red‖) functions,

perfectly matching the simulated data (i.e. lines 1-300,331-700,731-1000 had scores of 0 and

lines 301-330,701-730 had scores of 1). These function calls set vertical lines 300 and 700

pixels from the left edge of the image rather than from the zero point of the graph; additionally,

the horizontal scale of the graph is not one value per pixel. Therefore, there is a horizontal offset

of the vertical lines from their associated ―outage‖ score sets, which becomes closer to correct

alignment as we move to the right of the graph. In spite of this visual offset, the vertical line is

helpful in guiding the eye to the ―outages‖ (both in this graph and in the actual graphs later on),

so the lines will be included. The reader is assumed to be able to see the pattern and use the

vertical lines as a general guide for the eyes.

www.manaraa.com

54

For contrast, a perfectly ineffective filter would not be able to differentiate any lines and

would return either all the same score (e.g. a horizontal line of some value from zero to one), or a

random set of scores as in the simulated values from Figure 8.

Figure 8 - Simulated Graph of Scores from a Perfectly Ineffective Filter

If one were to create a measure of effectiveness for these filters, three factors would

weigh in more than any others: effectiveness at recognizing ―spam‖ log entry types from ―ham‖

log entry types; the ―noise‖ level of scores for records which do not match the ―spam‖ set; and

the ease of implementing such a filter. The first of these factors is obvious and clearly most

important—a filter which cannot differentiate is of no use. The second factor becomes obvious

as one looks at the major difference between Figure 7 and Figure 8; if scores are all over the

gamut, ―spam‖ score patterns may be difficult to recognize even if their record scores are

numerically differentiable from ―ham‖ scores. The third factor becomes obvious when one

www.manaraa.com

55

thinks operationally: nobody will use the technique at all if it is too difficult to implement or too

difficult to understand. These factors would not reasonably weigh equally. On a scale of 0 to

10, spam/ham recognition might reasonably represent 5 of the 10 points (i.e. a scale of 0-5

representing differentiating ability). The ―noise level‖ of output might represent 3 points

(0=scores all over the score gamut, 1 and 2=scores scattered through less of the score gamut,

3=low levels of score spread in the score gamut). And the implementation difficulty of such a

filter might be represented by 2 points (0=very difficult to implement and interpret, 1=less

difficult to implement and interpret, 2=easy to implement and interpret). This scale will be

referred to as the Filter Effectiveness Scale (or FES) going forward.

On such a scale, assuming implementation difficulty in line with the other two

differentiating factors which are obvious in the graphs, the ideal filter that would generate Figure

7, and the completely ineffective filter that would generate Figure 8, would receive FES scores

of 10 and 0, respectively.

4.1.2.2 Spring outage actual scored log entries

The actual scored log entries, as output by the three spam filters, used textual time/date

stamps, so these values were converted to Unix epoch time values for graphing. Unix epoch

time is the number of seconds since midnight (00:00) January 1, 1970. This long integer, being a

numeric, is easly used in scatterplots and the like, and is less likely to cause parsing problems for

R. Actual times and dates of the x-axis markers have been added to help the reader understand

the timelines of the log entries. Patterns in the graphs have been circled to make them more

obvious to the reader.

The output scores of these programs was graphed using the so-graphs.R script, found in

the program’s appendix. The times of known outages were marked as vertical red lines on the

www.manaraa.com

56

graphs for reference; blue lines were also added to represent the end-times of outages. These

start and end times were taken from the trouble-tickets written by operations personnel in the

Family History department, and are approximate, being tied to the time when the server engineer

was notified of the problem and when the problem was perceived to be resolved. Remember that

these are very approximate, due to the offset and horizontal scaling issues discussed before, so

they are used only to guide the eyes to the graph area where issues occurred.

Figure 9 through Figure 11 show the three filters’ scores of the app2 log, using no word

chaining (chain-length=1), no number normalization, and of course no chain stacking.

Essentially the only manipulation of logs was to put the log message body into an email template

for the filters (the same template was used for all training and testing). Figure 12 through Figure

14 show the same graphs for the app1 log files; these logs cover the last half of the month.

Figure 9 - SpamAssassin – App2, Chain-length 1,

No Normalization, Marked .

www.manaraa.com

57

Figure 10 - SpamBayes – App2, Chain-length 1,

No Normalization, Marked .

Figure 11 - Bogofilter – App2, Chain-length 1,

No Normalization, Marked .

www.manaraa.com

58

Figure 12 - SpamAssassin - App 1, Chain-length 1,

No Normalization, Marked .

Figure 13 - SpamBayes - App1, Chain-length=1,

No Normalization, Marked .

www.manaraa.com

59

Figure 14 - Bogofilter - App1, Chain-length=1,

No Normalization, Marked .

Between the two logs, three of the four outages have associated vertically-spread

datapoints which are very plain in the SpamBayes and Bogofilter graphs (the SpamAssassin

graph will be addressed shortly). In fact, there are similar patterns on the app 2 graph suggesting

that the problem occurred at those times as well. Since these servers are in transition, and

management of the servers is shared between IT operations (which documented the 4 outages

used here), and development (which has not documented any outages, but says there have been

several), this is not only possible, but quite likely. A quick scan of the logs in those time frames

suggests that the servers indeed did have problems then and were restarted to resolve them.

Recall that the scores returned by the three filters are driven by whether the words in the

log messages are more similar to those in the spam record set or the ham record set. The dozens

of log entries for each outage time frame include more words from the spam set than is normal,

www.manaraa.com

60

which skews the score higher, depending on how many spam words are included in the message.

The pattern seen in the SpamBayes and Bogofilter graphs for those time frames, is a more or less

vertical line of dots, indicating a number of records close in time which have a higer proportion

of spam-like words (i.e. words from problem records which were used to train the filter as

―spam‖). These patterns are quite plain to see, but are marked on the graphs to increase their

visibility. They are also fairly plainly correlated with the four outages noted by the vertical red

lines, and seem to show several other, earlier, undocumented outages on app2 during the time

frame of the graphs.

Following the scoring criteria listed above, both SpamBayes and Bogofilter would score

5 for ability to differentiate ―spam‖ records from ―ham‖ records. However, SpamAssassin

would have to score a 0: while there are points at the expected places on the graph, they are not

differentiable from other points which appear to be unrelated to the outages. As far as score

noise goes, SpamAssassin has very little, while SpamBayes and Bogofilter have a bit more,

giving them scores of 3 , 2 and 2. All three filters score a 2 for ease of implementation: a look at

the code in Appendix A will show that they are all about the same difficulty with integration, and

all three filters are widely available free tools, with straight-forward command-line interfaces.

Thus these scores might receive the following FES scores: SpamAssassin 5, SpamBayes and

Bogofilter 9 and 9.

SpamAssassin, which in earlier tests was so effective at differentiating logs, seems to not

show the outages very clearly – just a few darker areas of data points with high scores.

However, when the points are jittered, the number of points in these areas becomes more clear,

showing that this filter does indeed detect the outage-related records, as seen in Figure 15 and

Figure 16. SpamAssassin is assigning the same high (4.7) and low (3.1) values to all of these log

www.manaraa.com

61

entries, making its score graph actually closer to the ideal graph (Figure 7) than SpamBayes and

Bogofilter.

Figure 15 - Jittered SpamAssassin, App2, Chain-length=1,

No Normalization, Marked .

www.manaraa.com

62

Figure 16 - Jittered SpamAssassin, App1, Chain-length=1,

No Normalization, Marked .

Thus the SpamAssassin scores might be reasonably adjusted to 5 for effectiveness and 2

for noise, for a FES score of 9, the same as the other two filters, at least with this data set. This

also brings out the fact that the score patterns for SpamBayes and Bogofilter are actually easier

to see on a graph than the score pattern for SpamAssassin, even though the SpamAssassin pattern

more closely matches the ―perfect filter‖ graph.

Differences in the filter effectiveness and internal scoring mechanisms of the three filters

explain the differences in graphs, including SpamAssassin’s score specificity. Overall, the

vertical graph patterns which represent higher filter scores (whether seen with or without

jittering) are clear in each graph.

Considerable time was taken in earlier parts of this thesis to show how various

manipulations might positively impact the effectiveness of these Bayesian content filters in

www.manaraa.com

63

detecting differences between log entries. The unmodified text has been shown sufficiently

above, but for comparison, Figure 17 through Figure 19 show graphs where words were chained

together in 3-grams (e.g. ―Now is the time for‖ becomes ―Now_is_the is_the_time

the_time_for‖) and run through each filter. Note that in all three cases, the graphical attributes

are less plain to discern than in the non-chained text case, though the SpamBayes graph is still

plain. In the trivial log entry testing, only SpamAssassin benefited significantly from chained

words, and it has shown to be ineffective in differentiating records in this test already, so the

overall ineffectiveness of chained words in this case is not unexpected.

Figure 17 - SpamAssassin (jittered) - App1, Chain-length=3,

No Normalization or Stacked Chain .

www.manaraa.com

64

Figure 18 - SpamBayes - App1, Chain-length=3,

No Normalization or Stacked Chain .

Figure 19 - Bogofilter - App1, Chain-length=3,

No Normalization or Stacked Chain .

www.manaraa.com

65

The SpamAssassin scores were in the same bimodal distribution that we saw with the

non-manipulated data, so the graph jittering treatment makes sense here as well.

These data manipulations, while increasing the difficulty of integration (dropping

integration ease to 1), actually push the differentiation and noise scores for SpamAssassin down,

to perhaps 2 and 1 (for a FES score of 4); SpamBayes is largely unaffected (except for ease of

integration going to 1, with a FES score of 8), while Bogofilter’s apparent effectiveness goes

down to a 2 (with noise unaffected, for a FES score of 6). The chained words manipulation does

not appear to be helpful for this particular task, especially for SpamAssassin and Bogofilter.

Figure 20 - SpamBayes - App1, Chain-length=3,

No Stacked Chains, Numbers Normalized

www.manaraa.com

66

Figure 21 - SpamBayes - App1, Chain-length=3,

Stacked Chains, No Numbers Normalized

Figure 22 - SpamBayes - App1, Chain-length=3,

Stacked Chains, Numbers Normalized .

www.manaraa.com

67

Figure 20 through Figure 22 cut the other way across the manipulations tested, showing

the differences between SpamBayes graphs at a chain length of 3 with chains stacked, numbers

normalized to zeros and both. SpamBayes graphs were chosen because they showed the most

variability overall and thus the differences would be easiest to see with them. Note that stacking

the chains made no difference whatever with these, and that the normalized numbers made a very

slight difference, moving only one horizontal line of entries up on the graph. Only some entries

have relatively differentiable numbers (such as IP addresses, MAC addresses, etc.) which would

affect the entry’s scores; thus most entries were not affected by normalizing the numbers to

zeros. (For examples of these sorts of lines, see the log entries in Figure 2 and

Figure 3.) The moved line of points is likely the set of records with IP addresses and the like that

are affected by this change. It is interesting that they all move together, suggesting that the

training data set causes them to be recognized as more spam-like as they come through as zeros,

however the moved points do not clarify when outages occur, and are not directly impacting of

this analysis.

The chain stacking and number normalization manipulations again increase the

complexity of integration (dropping those scores to 1), but do not appreciably impact the score

levels of the filter; the same was true of the other two filters.

In summary of the above scatter plots, almost all of the score scatterplots for SpamBayes

and Bogofilter showed very discernible patterns indicating outages related to the training record

set. SpamAssassin was similarly effective, but was so consistent to its scoring that the values

had to be jittered in the graph before its Bayesian content filter’s effectiveness became plain to

see in the graphs.

www.manaraa.com

68

4.1.2.3 Fall Outage Applicaton Log Analysis

With the effectiveness of the filters established, the log entries from the four time periods

of Fall outages were taken, logs from the 12th, 16th,18th and 21st of November. These days’

logs were very large and unwieldy, so they were trimmed to the hour of the error for two logs

(the outage having occurred late in the given hour), and to the hour prior to the outage in

question as well as the hour of the outage for the other two logs (the outage having occurred

early in the given hour). This was intended to bracket the problem time frames sufficiently. For

log entries from the 12th, there were 78,779 lines for the hour in which the outage occurred.

There were 167,449 log entries for the hour prior to and hour of the outage on the 16th. There

were 78,779 entries for the hour of the outage on the 18th. For the log entries on the 21st, there

were 18,654 log entries for the hour prior to and the hour of its outage.

The detected outage for the 12th started at 18:48 (24-hour time format), and there were

33 lines in the 18:47 and 18:48 minutes which were errors that may have been associated with

the outage. These were used to train the filters as ―spam.‖ There were 75,704 other lines in the

logs. Bayesian filters are sensitive to imbalanced training sets, so the original 33 lines were

removed from the log file and 33 lines were randomly sampled (using randlines.py) from these

remaining log lines to represent ―ham‖ in the Bayesian filters.

Again, SpamAssassin, SpamBayes and Bogofilter were used for the filtering work to be

done. The lines were again manipulated prior to training and testing: with and without number

normalization, and chain lengths from 1 to 4. Chain stacking was not tested due to the prior tests

showing it as ineffective in increasing filter accuracy; the same was true for longer chain lengths,

as seen in Table IV. SpamAssassin graphs were jittered to increase the visibility of patterns, as

with the spring data.

www.manaraa.com

69

After training each filter with the specifically modified lines, all the lines for the 4 days’

unfiltered log entries were processed through the Bayesian filters, with the resulting scores

recorded. These scores were then graphed against the timestamps for their entries; timestamps

were again converted to Unix epoch times (number of seconds since beginning of day Jan 1,

1970) so that a simple numeric scatterplot could be used. These runs were automated with

l_final_run_stage.sh, which wrapped the previously used l_train.py and l_test.py. The filters left

some lines empty or with error messages, so scrubfiles.py cleaned the files up. Graphs were

generated with so-graphs.R. Actual dates for the reference epoch time values have been added to

the graphs to give a better idea of the timeline on the x-axis.

Figure 23 - SpamAssassin (Jittered),

Chain-length=1, 11/12 .

www.manaraa.com

70

Figure 24 - Bogofilter, Chain-length=1, 11/12

Figure 25 - SpamBayes, Chain-length=1, 11/12

www.manaraa.com

71

Note in Figure 23 through Figure 25, the change in scores (most plain by the vertical

disjunction of points in Figure 25, but also visible in smaller similar disjunctions in Figure 24

and the small break in the areas of points in Figure 23) immediately prior to the outage start time,

which is indicated with the vertical red line. Since this was the log set used for training, this was

to be expected. This is not what happened on the other days, as shown in Figure 26 through

Figure 34. We again see the SpamAssassin bimodal distribution for these scores for all but one

of the days, as seen in Table IX.

Table IX - Fall Data SpamAssassin Scores

Log file date
High
score

Low
score

Number of records
with other scores

11/12 4.5 3.1 2
11/16 4.5 3.1 1
11/18 4.5 3.1 1
11/21 1.5 1.5 2

www.manaraa.com

72

Figure 26 - SpamAssassin, Chain-length=1, 11/16

Figure 27 - Bogofilter, Chain-length=1, 11/16

www.manaraa.com

73

Figure 28 - SpamBayes, Chain-length=1, 11/16

Figure 29 - SpamAssassin, Chain-length=1, 11/18

www.manaraa.com

74

Figure 30 - Bogofilter, Chain-length=1, 11/18

Figure 31 - SpamBayes, Chain-length=1, 11/18

www.manaraa.com

75

Figure 32 - SpamAssassin, Chain-length=1, 11/21

Figure 33 - Bogofilter, Chain-length=1, 11/21

www.manaraa.com

76

Figure 34 - SpamBayes, Chain-length=1, 11/21

This data set had more data points and more similar records (these being application logs

rather than syslogs), and the ―score noise‖ levels reflected these facts. The jittered

SpamAssassin graph in particular would have dropped on that portion of the FES scale, to a 6 (3

for differentiation, 1 for noise and 2 for integration ease). All three filters would have dropped in

apparent ability to differentiate records, though the score patterns are still visible. SpamBayes

and Bogofilter would score 8 and 8 (3 for differentiation, 3 for noise and 2 for ease if

integration).

Note that in Figure 26 through Figure 34, though there are changes in some of the

smoothed regression lines just before or after the outage time for some graphs, there were no

distinct graphical difference in the data points just before the outage times for graphs of scores

for 11/18 or 11/21. There was a very similar disjunction of points in the 11/16 graphs, from the

www.manaraa.com

77

hour previous to the recorded outage time, which would indicate a similar set of log entries to the

training set, and thus a similar application state to the outage on 11/12.

As with the spring outages, it is interesting to note the differences in the score graphs for

the various tools. SpamAssassin’s score set shows only a few score values, and lots of them,

spread evenly through the log entry set, thus requiring jittering to be seen clearly in the graphs,

while SpamBayes, shows vertically clustered score sets across the timeline. One possible

explanation for the SpamAssassin pattern is that it uses relatively few differentiators for the

scores, which would not be inconsistent with a tool that uses a suite of tests, only one of which is

the Bayesian content filter. For the SpamBayes pattern, one explanation could be that it takes

message proximity into account when scoring log entries and that it uses more differentiating

factors so that it gets more possible scores. Bogofilter seems to be somewhere between these

two distributions, with a largely trimodal distribution, corresponding to its spam/ham/unknown

scoring concept.

www.manaraa.com

78

Figure 35 - SpamBayes, Chain-length=2, 11/16

Figure 36 - SpamBayes, Chain-length=2,

Normalized Numbers, 11/16 .

www.manaraa.com

79

Figure 37 - SpamBayes, Chain-length=3, 11/16

Figure 38 - SpamBayes, Chain-length=3,

Normalized Numbers, 11/16 .

www.manaraa.com

80

Figure 39 - SpamBayes, Chain-length=4, 11/16

Figure 40 - SpamBayes, Chain-length=4,

Normalized Numbers, 11/16 .

www.manaraa.com

81

The same held true for the variations in word-chain length, normalization, etc., as seen in

Figure 35 through Figure 40, which show these analysis variations for the 11/16 entries under

SpamBayes. SpamBayes graphs are shown because they show generally more variation than the

other filters’ graphs, and its graphs were the most plain in showing the change in filter scores

correlating to associated log entries.

These graphs show that the filter did not find log entries from the outages of 11/18 or

11/21 which were the same as those on 11/12. Indeed, the log filter output, with scores appended

to the log entries, was closely scrutinized at the times of reported outages by the researcher. The

logs entries at those times did not appear to be related to the log entries from the 11/12 time

frame. Log entries at the documented outage time on 11/16 were also dissimilar to the training

logs of 11/12. However, log entries at the time of the similar pattern, some 20 minutes earlier

than the reportage outage time, did show some similarities to the training log set. Taking this as

added backing, the filter’s findings that the outages on the 16th and 21st were not related does

appear to be correct, while the outage on the 16th does appear to be similar, but not at the time

reported. The initial assumption that they were all related does appear, in fact, to be mistaken.

This conclusion is quite useful, as it could redirect root cause analysis efforts towards more

fruitful lines of investigation.

4.1.3 Research Results Summation

Three types of Bayesian content filtering experiments were conducted for this research,

utilizing three widely used open source Bayesian spam filters: a spam/ham corpus was

manipulated and tested by the filters as a test of the basic functionality of the filters, and as a

study of how log entries might be handled differently due to their different lengths and repetitive

www.manaraa.com

82

natures. Two types of log entries were manipulated and tested by the filters as a trivial test to be

sure that these Bayesian spam filters could differentiate log entries and what various

manipulations may do to that ability. And, finally, actual production log entries were used to

train the filters and logs taken around the times of similar outages were tested for both positive

and negative results.

These log sets were quite large, so scatterplots were utilized to show patterns in the

scores in a compact and human-accessible way. These scatterplots, seen in Figure 9 through

Figure 40, showed patterns for the spring and fall outages which corresponded to the similarities

of log entries to the log entries used to train the three filters.

In Figure 9 through Figure 22, the spring outage score graphs were found to to contain

patterns which corresponded to the outages reported. Additionally, several unreported outages

were detected by the filter and shown as similar vertical point patterns in the logs. These score

graph patterns show that these filters can be used for detecting outages, once they are trained for

logs from a given type of outage.

In Figure 23 through Figure 40, the fall outage score graphs found that two of the three

outages after 11/12 were not similar in log pattern to the first outage (11/18 and 11/21), while the

11/16 outage was similar, but occurred several minutes earlier than reported. These score graphs

exhibited dissimilar patterns for two outages following the trained outage, thus demonstrating the

utility of these Bayesian spam filters as a mechanism to eliminate possible causes for outages

due to the lack of similarity of score patterns when the filters are trained for a particular type of

outage.

Using the proposed Filter Effectiveness Scale (FES) scores as a rough guideline for

effectiveness with the two data sets, SpamAssassin, SpamBayes and Bogofilter would have all

www.manaraa.com

83

scored at a 9 out of 10 for the spring outages, while with the fall outages, SpamBayes and

Bogofilter would have gone to FES scores of 8 and 8, and SpamAssassin would have dropped to

a 7, mostly due to the noise from the need to jitter scores for visibility. Thus the research

question of this thesis (―Is it possible to find a widely available, advanced filtering and data

clustering technology that is useful for log analysis?‖) can be answered yes, for each of the three

filters tested.

www.manaraa.com

84

www.manaraa.com

85

5 SUMMARY AND FUTURE WORK

5.1 Motivation

Computer system outages can be very expensive for organizations and frustrating to IT

workers. Log entries written by computer systems are often the main recourse for compter

technicians and engineers as they attempt to resolve system problems. These logs are

―information ore‖ for system administrators; this ore must be sifted, filtered and refined, but the

end result is potentially of great value, but one of the biggest problems with these logs is the

extremely poor richness of the ―information ore‖. The primary purpose of this research was to

answer the question, ―Is it possible to find a widely available, advanced filtering and data

clustering technology that is useful for log analysis?‖

5.2 Work Summary

One set of filtering tools that is widely used and freely available today is the spam filter.

In particular, spam filters which utilize statistical text analysis, such as those filters using

Bayesian content filters, could be used with other text sources, such as log files.

One trains a Bayesian content filter by giving it records which belong to each of several

categories, allowing it to build a model representing the likelihood of a given word to belong to a

given category. Spam filters commonly distinguish only two categories, called spam and ham.

For log filtering, a set of logs related to a type of outage could be used as ―spam‖ training entries,

www.manaraa.com

86

while a random sampling of non-related entries could be used as ―ham‖ training entries, allowing

a filter to build a statistical model for a log set, and allowing it to filter those log entries.

In this research, three spam filters utilizing Bayesian content filters (SpamAssassin,

SpamBayes and Bogofilter) were tested for this type of scenario, and their results graphed. The

effectiveness of these filters was scored on a Filter Effectiveness Scale (FES) for comparison

with each other.

In the first stage of the research, the effectiveness of these filters was tested with the

SpamAssassin email corpus. Some minor manipulations were made with these emails to make

them more similar to log entries (in particular, message headers and bodies were removed or

manipulated). SpamAssassin was generally the most effective, able to properly group the emails

(from its own corpus) above 90% of the time; Bogofilter struggled with the corpus, with some

manipulations confusing it and pushing its recognition rates below 50% in many cases.

SpamBayes took the middle tier, doing its best work with unmanipulated messages (though not

as well as SpamAssassin), and its worst with heavily manipulated ones (though not as poorly as

Bogofilter).

In the second stage of the research, the log entries from two particular applications were

pulled from production systems at the School of Technology, and the effectiveness of the filters

in properly grouping these entries was measured. Various manipulations of the log entries were

tested and the associated scores were compared. In particular, short word chains (or n-grams)

were found to help SpamAssassin and SpamBayes, but long word chains were generally

detrimental.

In the third stage of the research, log files from production systems with actual outages

were tested with the filters. A set of related outages from the Spring of 2011 were used to train

www.manaraa.com

87

and test the filters to determine if the filters could find related outages; then a set of possibly

related outages from the Fall of 2010 were tested to determine if the filters could show whether

or not they were related.

In the Spring set, patterns of record scores related to outage times were easily seen in

Figure 9 through Figure 16 (with the necessity of jittering the SpamAssassin scores to see them

plainly).

In the Fall set, a possible relation was found between two of the outages, but the other

two were determined to be unrelated, as seen in Figure 23 through Figure 34. The greater

number of records for the Fall data significantly increased the noise level of output score graphs,

making even the patterns found more difficult to see, making the filters show lower FES scores

for the Fall data set than the Spring data set.

Today’s information systems produce daunting numbers of log entries. Is there utility in

using widely available, advanced filtering and data clustering technologies for analyzing these

logs? This research shows that today’s widely available Bayesian spam filters can be used

effectively in filtering and highlighting records of interest amongst tens of thousands of records.

Graphs of filter scores from each of the three filters tested showed that logs can be analyzed

effectively by Bayesian content filters both for recognizing patterns and for filtering out guessed

patterns.

5.3 Recommendations and Future Work

This sort of statistical text analysis and filtering of log entries is not widely used, and yet

based on these results, it shows a great deal of promise as a method for ―refining the ore‖ in log

file analysis. The Bayesian content filters used in this research were, for the most part, open

www.manaraa.com

88

source and liberally licensed. One of these engines, or something like them, could be included as

options for filtering and categorizing logs in one of the many log analysis or log handling tools

available freely or commercially. Log analysis can be quite challenging for several reasons,

copious data quantities not least amongst these; log analysists need more tools and more

powerful tools going forward.

For some sorts of Bayesian content filters, n-gram or word-chaining can be useful for

increasing the effectiveness of the filter, but this depends on the characteristics of the given filter.

In a few cases in this research, normalizing numbers was somewhat helpful for increasing pattern

recognition. Variations on these manipulations could be contrived which would be worth using

for some filters.

In this research, only message bodies were used to train filters, but program names,

facilities and severities of log entries could be used for future analyses, as these additional pieces

of information could give ―hints‖ to an analysis, helping a filter to determine more categorically

whether a given entry should be highlighted or filtered, much like the a priori in a Bayesian

statistic.

Bayesian content filters, while powerful and efficient, are very simple software devices.

Some types of message manipulation were attempted here, with mixed results. These

manipulations should be investigated more carefully, particularly after a clearer understanding of

the intricacies of a given Bayesian content filter. Other types of text manipulations may be

tested, but more powerful statistical tools, such as hidden Markov models, are likely to be more

useful in future research.

The basic premise of using a simple Bayesian content filter for filtering log entries has

been shown here to be well worth the integration effort required, even without a great deal of

www.manaraa.com

89

message manipulation to aid these off-the-shelf filters. The ability to train a filter with a small

set of problem-related log entries and then sift through massive numbers of additional logs could

be a great boon to administrators looking for similar problems occurring at other times. In the

debugging of a complex application issue, knowing when similar problems occurred can be quite

valuable. Further, issues found during the testing of an application could be used to train a filter

that would be used during the production phase of that application, giving operations staff a

―heads up‖ when potential issues arrive. With a certain amount of discipline, systems

administrators could use filters like these to proactively watch for previously encountered system

problems. Any log analysis package offering these sorts of intelligent filtering, reporting and

alerting capabilities is sure to find a ready market as administrators realize the greatly increased

power of statistical text analysis over simple text searching and record-type-counting capabilities

on the market today,

With the exploding interest in text and data mining in the current knowledge economy,

more powerful analysis tools are becoming available each year. As these tools appear and

mature, they will eventually either lend themselves to integrations as straight forward as the

spam filter integrations used in this research or have such capabilities built-in, offering users

greater power of log analysis. As these nascent capabilities mature those integration methods

will prove a fruitful line of research: there is value in making more and more powerful tools

available, and perhaps even more value in making these sorts of valuable tools easy to utilize.

Today’s computer technologies provide vast amounts of data to end users. Similarly, the inner

workings of those technologies provide vast amounts of run-time data to system administrators.

If we are to use that data effectively, we must find ways to utilize the best technologies and best

www.manaraa.com

90

analysis techniques available. We have little choice but to stand on the shoulders of giants. This

will take effort, but the view will be worth it.

www.manaraa.com

91

REFERENCES

Aharon, M., Barash, G., Cohen, I, Mordechai, E. "One graph is worth a thousand logs:

Uncovering hidden structures in massive system event logs." Proceedings of the European

Conference on Machine Learning and Knowledge Discovery in Databases. 2009. Part I, 243.

Allison, B. "An improved hierarchical Bayesian model of language for document classification."

Proceedings of the 22nd International Conference on Computational Linguistics. 2008. Volume

1, 25-32.

Andrews, J.H. "Testing usering log file analysis: Tools methods and issues." Proceedings of the

1th IEEE International Conference on Automated Software Engineering. 2008. 157.

Apache Foundation. Apache Chainsaw. http://logging.apache.org/chainsaw/index.html (accessed

April 17, 2010).

—. SpamAssassin - Welcome to SpamAssassin. http://spamassassin.apache.org/ (accessed June

25, 2011).

—. "SpamAssassin public corpus readme." SpamAssassin.

http://spamassassin.apache.org/publiccorpus/ (accessed February 13, 2019).

Axelsson, S. "Intrusion detection systems: A survey and taxonomy." Depart.of Computer

Engineering, Chalmers University, Tech.Rep, 2000: 99-15.

Bambauer, D., Palfrey, J., Abrams, D. "A Comparative Analysis of Spam Laws: The Quest for

Model Law." ITU WSIS Thematic Meeting on Cybersecurity. Geneva: International

Telecommunication Union, 2005.

Berkhin, P. "A Survey of Clustering Data Mining Techniques." Grouping Multidimensional

Data: Recent Advances in Clustering, 2996: 25--71.

Brin, S., Motwani, R., Silverstein, C. "Beyond market baskets: Generalizing association rules to

correlations." ACMSIGMOD Record. 1997. 26(2), 276.

Cavnar, W.B. and Trenkle, J.M. "N-gram-based text categorization." Proceedings of SDAIR-94,

3rd Annual Symposium on Document Analysis and Information Retrieval. 1994. 161--175.

Chang, H.J. and Hung, L.P. and Ho, C.L. "An anticipation model of potential customers'

purchasing behavior based on clustering analysis and association rules analysis." Expert systems

with applications, 2007: 32(3), 753-764.

www.manaraa.com

92

Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D. "An empirical study of operationg systems

errors." 18th ACM Symposium on Operating Systems Principles (SOSP'01), October 21 2001-

October 24. 2002. 35(5) 73-88.

Dai, W., Xue, G., Yang, Q., Yu, Y. "Transferring naive Bayes classifiers for text classification."

Proceedings of the National Conference on Artificial Intelligence. 2007. 22(1) 540.

Forte, D. "Log management for effective incident response." Network Security, 9 2005: 4-7.

Foundation, Apache. "SpamAssassin: Welcome to SpamAssassin." SpamAssassin.

http://spamassassin.apache.org (accessed February 13, 2010).

Fox, J. and Weisberg, S. An {R} Companion to Applied Regression. Thousand Oaks: Sage, 2011.

Genkin, A., Lewis, D. D., Madigan, D. "Large-scale Bayesian logistic regression for text

categorization." Technometrics, 2007: 49(3) 291-304.

Gerhards, R. "RFC 5424 - The Syslog Protocol." IETF. http://tools.ietf.org/html/rfc5424

(accessed February 13, 2010).

Graham, P. Hackers & Painters: Big Ideas from the Computer Age. Beijing: O'Reilly, 2004.

Gunter, D., Tierney, B. L., Brown, A., Swany, M., Bresnahan, J., Schopf, J. M. "Log

summarization and anomaly detection for troubleshooting distributed systems." Proceedings of

the 8th IEEE/ACM International Conference on Grid Computing. 2007. 226-234.

Hellerstein, J. L., Ma, S., Perng, C. S. "Discovering actionable patterns in event data." IBM

Systems Journal, 2002: 41(3), 475-493.

Hochheiser, H., Schneiderman, B. "Using interactive visualizations of WWW log data to

characterize access patterns and informa site design." Journal of the American Society for

Information Science and Technology, 2001: 52(4), 331-343.

Huang, C., Cohen, I., Symons, J., Abdelzaher, T. "Achieving scalable automated diagnosis of

distributed systems performance problems." Enterprise Systems and Software Laboratory, HP

Laboratories Palo Alto. Palo Alto, CA. Rep. HPL-2006-160, 2007: 1.

Hughs, D. "Using visualization in system and network administration." Proc. 10th Systems

Administration Conference (LISA’96). 1996. 59--66.

Hulshof, C. D. "Log file analysis." Encyclopedia of Social Measurement, 2004: 577--583.

IBM. IBM - automated problem diagnosis and resolution - Tivoli Enterprise Console - software.

http://www-01.ibm.com/software/tivoli/products/enterprise-console/ (accessed March 13, 2010).

—. IBM Tivoli Software. http://www-01.ibm.com/software/tivoli (accessed March 20, 2010).

IETF. RFC 3195 - Reliable Delivery for Syslog.

https://tools.ietf.org/tools/rfcmarkup/rfcmarkup.cgi?rfc=3195 (accessed April 19, 2010).

www.manaraa.com

93

—. RFC 3464 - An Extensible Message Format for Delivery Status Notifications.

http://tools.ietf.org/html/rfc3464 (accessed April 19, 2010).

IETF Syslog Working Group. IETF Syslog Working Group Home Page.

http://www.employees.org/~lonvick/index.shtml (accessed March 13, 2010).

Journal, Linux. "A Statistical Approach to the Spam Problem." Linux Journal.

http://www.linuxjournal.com/article/6467 (accessed April 10, 2010).

Juan, A. and Vilar, D. and Ney, H. "Bridging the gap between naive Bayes and maximum

entropy text classification." Pattern Recognition in Information Systems. 2007. 59--65.

Lewis, D. "Naive (Bayes) at forty: The independence assumption in information retrieval."

Pattern Recognition in Information Systems, 1998: 4--15.

linux.org. The Linux Home Page at Linux Online. http://www.linux.org (accessed April 17,

2010).

Liquidlabs. Logscape. http://www.liquidlabs-cloud.com/products/logscape.html (accessed April

17, 2010).

Lonvick, C. RFC 3164. http://www.ietf.org/rfc/rfc3164.txt (accessed March 13, 2010).

—. RFC 3164 notes. ftp://ftp.rfc-editor.org/in-notes/rfc3164.txt (accessed March 13, 2010).

Lunt, T. F. "Automated audit trail analysis and intrusion detection: A survey." In Proceedings of

the 11th National Computer Security Conference. 1988.

Ma, H., Hellerstein, J. L. "Mining partially periodic event patterns with unknown periods." Data

Engineering, 2001. Proceedings. 17th International Conference on. 2001. 205--214.

Makanju, A. A. O., Zincir-Heywood, A. N., Milios, E. E. "Clustering event logs using iterative

partitioning." Proceedings of the 15th ACMSIGKDD International Conference on Knowledge

Discovery and Data Mining. 2009. 1255-1264.

Meyer, T. A., Whateley, B. "Spambayes: Effective open-source, Bayesian based, email

classification system." Proceedings of the First Conference on Email and Anti-Spam (CEAS).

2004. 98.

Microsoft Corp. Download details: Log parser 2.2.

http://www.microsoft.com/downloads/en/details.aspx?familyid=890cd06b-abf8-4c25-91b2-

f8d975cf8c07&displaylang=en (accessed 4 17, 2010).

Nagios Enterprises, LLC. Nagios - The Industry Standard in IT Infrastructure Monitoring.

http://www.nagios.org/ (accessed March 13, 2010).

Nawyn, K. E. "A Security Analysis of System Event Logging with Syslog." SANS Institute, no.

As part of the Information Security Reading Room, 2003.

www.manaraa.com

94

New, D., Rose, M. RFC 3195. ftp://ftp.rfc-editor.org/in-notes/rfc3195.txt (accessed March 13,

2010).

Nicholas, D., Huntington, P., Lievesley, N., Withey, R. "Cracking the code: web log analysis."

Online Information Review, 1999: 23(5) 263--269.

Novell, Inc. Log Management software | Sentinel Log Manager.

http://www.novell.com/products/sentinel-log-manager/ (accessed April 17, 2010).

Palfrey, J. and Abrams, D. and Bambauer, D. "A comparative analysis of spam laws: The quest

for a model law." Buscalegis, 2005.

Pike, R., Dorward, S., Griesemer, R., Quinlan, S. "Interpreting the data: Parallel Analysis with

Sawzall." Scientific Programming, 2005: 13(4), 277--298.

Quest Software, Inc. "Network monitoring software tools with Big Brother by Quest Software."

Quest Software. http://www.quest.com/bigbrother (accessed March 13, 2010).

Quest Software, LLC. Quest Software - Smart Systems Management. http://www.quest.com

(accessed March 20, 2010).

R Development Core Team. R: A Language and Environment for Statistical Computing.

http://www.R-project.org (accessed November 20, 2010).

Ragan, S. "Spam levels now at 90 percent says Symantec - junk mail arriving like clockwork -

Security." The Tech Herald. http://www.thetechherald.com/article.php/200922/3756/Spam-

levels-now-at-90-percent-says-Symantec-junk-mail-arriving-like-clockwork (accessed March 13,

2010).

Raymond, E. S. Bogofilter home page. http://bogofilter.sourceforge.net (accessed 4 10, 2010).

Rigoutsos, I., Floratos, A. "Combinatorial pattern discovery in biological sequences: The

TEIRESIAS algorithm." Bioinformatics-Oxford, 1998: 14(1), 55--67.

Rish, I. "An Empirical Study of the Naive Bayes Classifier." IJCAI 2001 Workshop on Empirical

Methods in Artificial Intelligence, 2001: 41-46.

Robinson, G. Old Spam Detection. http://radio-

weblogs.com/0101454/stories/2002/09/24/oldSpamDetection.html (accessed April 10, 2010).

Sahami, M., Dumais, S., Heckerman, D., Horvitz, E. "A Bayesian Approach to Filtering Junk E-

Mail." Learning for Text Categorization: Papers from the 1998 Workshop, 1998: 62 98-05.

Seewald, A. K. "An Evaluation of Naive Bayes Variants in Content-based Learning for Spam

Filtering." Intelligent Data Analysis, 2007: 11(5), 497--524.

SpamBayes. "SpamBayes: Bayesian anti-spam classifier written in Python." SpamBayes.

http://spambayes.sourceforge.net/ (accessed February 13, 2010).

www.manaraa.com

95

Splunk Inc. "Splunk | IT Search for Log Management, Operations Security and Compliance."

Splunk. http://www.splunk.com/ (accessed March 13, 2010).

Stearly, J. "Towards Informatic Analysis of Syslogs." Proceedings of IEEE International

Conference on Cluster Computing. 2004.

Swatch. Simple log watcher | get simple log watcher at SourceForge.net.

http://sourceforge.net/projects/swatch (accessed March 13, 2010).

Takada, T., Koike, H. "Tudumi: Information Visualization System for Monitoring and Auditiong

Computer Logs." Proceedings of the 6th International Conference on Information Visualization.

2002.

Thebert, S. Octopussy [home]. http://www.8pussy.org/dokuwiki/doku.php (accessed April 17,

2010).

Thompson, K. LogSurfer & LogSurfer+ = real time log monitoring and alerting.

http://www.crypt.gen.nz/logsurfer (accessed March 13, 2011).

Torvalds, L. The Linux Kernel Archives. http://kernel.org (accessed June 25, 2011).

Vaarandi, R. "A Data Clustering Algorithm for Mining Patterns from Event Logs." Proceedings

of the 2003 IEEE Workshop on IP Operations and Management. 2003. 119-126.

—. "Sec - A Lightweight Event Correlation Tool." 2002 IEEE Workshop on IP Operations and

Management. 2002. 111-115.

XpoLog Ltd. XpoLog log management and log analysis platform. http://xpolog.com (accessed

April 17, 2010).

Xu, W. and Huang, L. and Fox, A. and Patterson, D. and Jordan, M. "Mining console logs for

large-scale system problem detection." Proceedings of the Third conference on Tackling

computer systems problems with machine learning techniques. USENIX Association, 2008. 4--3.

Zdziarski, J. A. Ending Spam: Bayesian Content Filtering and the Art of Statistical Language

Classification. San Francisco, CA, USA: No Starch Press, 2005.

Zenoss Inc. Zenoss Open Source Server and Network Monitoring - Core and Enterprise.

http://www.zenoss.com/ (accessed March 13, 2010).

www.manaraa.com

96

www.manaraa.com

97

APPENDIX. PROGRAM CODE AND TEMPLATES

Spam Testing Programs and Scripts

shtrim.py

#!/usr/bin/python
-*- coding: utf-8 -*-

shtrim.py - spam/ham header trimmer/splitter
- Divides the header from the body for spam and ham mailbox entries, then creates

transformed mailbox entries of the following types:
1. Headers preserved, generic body
2. Body preserved, generic header
3. Messages created for each sentence in body; generic header

Current version: 0.7

Version info:
0.7 - 5/1/10 - rwh - Initial working version

import sys
import os.path as ospath
import os
import getopt
import glob

class shtrim:
 _DEFAULT_TARGET_DIR_TAIL = '.'+os.sep+'messages.trimmed'
 _DEFAULT_HEADER_TARGET_DIR_TAIL = '.hpreserved'
 _DEFAULT_BODY_TARGET_DIR_TAIL = '.bpreserved'
 _DEFAULT_BODY_SPLIT_TARGET_DIR_TAIL = '.bsplit'
 _DEFAULT_HEADER_TEMPLATE_FILE = 'shtrim.header.template.txt'
 _DEFAULT_BODY_TEMPLATE_FILE = 'shtrim.body.template.txt'
 _DEFAULT_BODY_SPLIT_TEMPLATE_FILE = _DEFAULT_BODY_TEMPLATE_FILE
 _verbose = False
 _DELETE_MODE = True#False
 _TEXT_TEMPLATE_HEADER='__INSERT_BODY_HERE__'
 _TEXT_TEMPLATE_BODY='__INSERT_BODY_HERE__'

 def usage(self):
 '''Show the usage of the program'''
 print '''Usage: shtrim.py -i <inputdir> [options]
 -i, --inputfilespec <filespec> Source file glob (required)
 -o, --outputdir <basedirname> Base name for output dirs (default =

'''+self._DEFAULT_TARGET_DIR_TAIL+''')
 -t, --headertemplatefile <filename> Tempate for header (default =

'''+self._DEFAULT_HEADER_TEMPLATE_FILE+'''

www.manaraa.com

98

 -b, --bodytemplatefile <filename> Tempate for body (default =
'''+self._DEFAULT_BODY_TEMPLATE_FILE+'''

 -s, --splittemplatefile <filename> Tempate for split-body (default =
'''+self._DEFAULT_BODY_SPLIT_TEMPLATE_FILE+'''

 -v, --verbose Turn on verbose logging
 -h, --help This help

Specified input files will be transformed into messages of 3 types (each with its own directory):
1. Headers preserved, generic body
2. Generic header; body preserved
3. Generic header; messages created for each sentence in body
'''

 def get_params(self):
 '''Parse out the command-line parameters'''
 try:
 opts, args = getopt.getopt(sys.argv[1:], "i:o:t:b:s:hv",

["inputfilespec=","outputdir","headertemplatefile=","bodytemplatefile=","splittemplatefile=","help","verbo
se"])

 except getopt.GetoptError, err:
 # print help information and exit:
 print str(err) # will print something like "option -a not recognized"
 self.usage()
 sys.exit(1)

 infilelist = None
 outdirbasename = None
 header_template_file = self._DEFAULT_HEADER_TEMPLATE_FILE
 body_template_file = self._DEFAULT_BODY_TEMPLATE_FILE
 split_template_file = self._DEFAULT_BODY_SPLIT_TEMPLATE_FILE

 for opt, arg in opts:
 if opt in ('-i','--inputfilespec'):
 inspec = arg
 if inspec.startswith('~'):
 inspec = os.path.expanduser(inspec)
 #print '-',inspec
 infilelist = glob.glob(inspec)
 #print len(infilelist)
 elif opt in ('-o','--outputdir'):
 outdirbasename = arg
 #print arg

 elif opt in ('-t', '--headertemplatefile'):
 header_template_file = arg
 if not ospath.exists(header_template_file):
 print 'The specified template file does not exist.'
 self.usage()
 sys.exit(1)

 elif opt in ('-b', '--bodytemplatefile'):
 body_template_file = arg
 if not ospath.exists(body_template_file):
 print 'The specified template file does not exist.'
 self.usage()
 sys.exit(1)

 elif opt in ('-s', '--splittemplatefile'):
 split_template_file = arg
 if not ospath.exists(split_template_file):
 print 'The specified template file does not exist.'
 self.usage()
 sys.exit(1)

 elif opt in ('-v','--verbose'):
 self._verbose = True
 elif opt in ('-h', '--help'):
 self.usage()

www.manaraa.com

99

 sys.exit()
 else:
 assert False, "Unsupported option specified"
 # ...

 if infilelist is None or len(infilelist) == 0:
 print 'Please specify at least one filename. '#,infilelist
 self.usage()
 sys.exit(1)
 if outdirbasename is None or outdirbasename == '':
 outdirbasename = self._DEFAULT_TARGET_DIR_TAIL
 if self._verbose:
 print 'Defaulting to output dir name: ',outdirbasename

 header_template = self.read_file_to_string(split_template_file)
 body_template = self.read_file_to_string(split_template_file)
 split_template = self.read_file_to_string(split_template_file)

 if header_template == None:
 print 'Could not read required header_template

file:',header_template_file
 sys.exit(2)
 if body_template == None:
 print 'Could not read required body_template file:',body_template_file
 sys.exit(2)
 if split_template == None:
 print 'Could not read required split_template file:',split_template_file
 sys.exit(2)

 return infilelist, outdirbasename, header_template, body_template, split_template

 def fix_target_dir(self,outdir):
 if ospath.isdir(outdir):
 outfiles = os.listdir(outdir)
 if len(outfiles) > 0:
 print 'Output dir ('+outdir+') is not empty.

',len(outfiles),'file(s)/dir(s) found in directory.'
 resp = raw_input('Overwrite '+str(outdir)+'? (y/N) ').lower()
 if resp != 'y':
 print 'Leaving output directory intact.'
 sys.exit(5)
 else:
 print 'Deleting files from target dir...'
 for thisfile in outfiles:
 this_full_file = outdir+os.sep+thisfile
 if ospath.isfile(this_full_file):
 if self._DELETE_MODE:
 if self._verbose:
 print

'Deleting',this_full_file

 os.remove(this_full_file)
 else:
 if self._verbose:
 print 'Would be

deleting',this_full_file,', but delete mode is turned off during testing.'
 else:
 print thisfile,'is not a regular file.

Bypassing...'
 else:
 print 'Output dir ('+outdir+') exists but is empty.'
 else:
 print 'Creating output dir,',outdir+'.'
 os.makedirs(outdir)

 def write_msg(self, fullname, new_msg, out_dir):
 fname = ospath.basename(fullname)

www.manaraa.com

100

 f_out = open(out_dir+os.sep+fname,'w')
 try:
 f_out.write(new_msg)
 finally:
 f_out.close()

 def split_message(self, message):
 _SPLIT_STRING = '\n\n'
 if _SPLIT_STRING in message:
 smessage = message.split(_SPLIT_STRING)
 if len(smessage) > 1000:
 print 'More than 1000 sentences in message. Skipping message.'
 return
 #header= message.split(_SPLIT_STRING)[0]
 header = smessage[0]
 if len(smessage) == 2:
 body = smessage[1]
 else:
 body = _SPLIT_STRING.join(smessage[1:])
 else:
 print 'Message invalid: cannot be split into header and body.'
 print 'Message is',len(message),'characters long'
 print 'Message[0:100]--->',message[0:100],'<---'

 header = None
 body = None
 return header, body

 def apply_template(self, text_in, template, replacement_string):
 #print template
 #print msg_in

 return template.replace(replacement_string, text_in)

 def read_file_to_string(self, this_file, exclude_comment_lines=True):
 if not ospath.exists(this_file):
 return None
 f_in = open(this_file)
 contents = None
 try:
 templatelines = f_in.readlines()
 if exclude_comment_lines:
 templatelines = [line for line in templatelines if not

line.startswith('#')]
 contents = ''.join(templatelines)
 #print contents

 finally:
 f_in.close()
 return contents

 def split_message_lines(self, message):
 lines = []
 if '.' in message:
 lines = message.split('.')
 last_entry = lines[-1]
 lines = [x+'.' for x in lines[:-1] if len(x.strip()) > 0]
 lines.append(last_entry)
 return lines

 def get_split_body_messages(self, body, template, replacement_string):
 '''Returns a list of messages the body if each being one sentence from the body

of the original message'''
 messages = []
 split_message = self.split_message_lines(body)
 for body in split_message:

www.manaraa.com

101

 messages.append(self.apply_template(body, template,
replacement_string))

 return messages

 def processfiles(self, filelist, outdirbase, h_template, b_template, s_template):
 print 'Processing files...'
 outdir_header = outdirbase+self._DEFAULT_HEADER_TARGET_DIR_TAIL
 self.fix_target_dir(outdir_header)
 outdir_body = outdirbase+self._DEFAULT_BODY_TARGET_DIR_TAIL
 self.fix_target_dir(outdir_body)
 outdir_split = outdirbase+self._DEFAULT_BODY_SPLIT_TARGET_DIR_TAIL
 self.fix_target_dir(outdir_split)

 bad_records = 0
 for each_file in filelist:
 old_msg = self.read_file_to_string(each_file)
 if old_msg == None:
 print 'Could not read old message from',each_file
 continue
 header, body = self.split_message(old_msg)
 if header == None or body == None:
 print 'Message not parsed:',each_file
 bad_records += 1
 continue
 header_message = self.apply_template(header, h_template,

self._TEXT_TEMPLATE_HEADER) #self.get_header_message(header, template)
 body_message = self.apply_template(body, b_template,

self._TEXT_TEMPLATE_BODY) #self.get_body_message(body, template)
 split_messages = self.get_split_body_messages(body, s_template,

self._TEXT_TEMPLATE_BODY)
 self.write_msg(each_file, header_message, outdir_header)
 self.write_msg(each_file, body_message, outdir_body)
 count = 0;
 for split_message in split_messages:
 count += 1
 self.write_msg(each_file+str(count), split_message, outdir_split)
 #new_msg = self.applytemplate(each, template)
 #self.write_msg(each, new_msg, outdir)
 print '...done processing files. ',bad_records,'bad records were found.'

 def start(self):
 infilelist, outdirbasename, header_template, body_template, split_template =

self.get_params()
 self.processfiles(infilelist, outdirbasename, header_template, body_template,

split_template)

if __name__ == '__main__':
 sht = shtrim()
 try:
 sht.start()
 except KeyboardInterrupt:
 print 'Interrupted by user...'

shtrim.body.template.txt

#shtrim.py header template file -- commented lines are removed from the template by default
__INSERT_HEADER_HERE__

Generic message body text.

www.manaraa.com

102

shtrim.header.template.txt

#shtrim.py body template file -- commented lines are removed from the template by default
Return-Path: skip@pobox.com
Delivery-Date: Sat May 1 20:47:01 2010
From: spamtest.rhavens@byu.com (Russel Havens)
Date: Sat, 1 May 2010 19:47:01 -0600
Subject: Test Message

__INSERT_BODY_HERE__

stestgen.py

#!/usr/bin/python
-*- coding: utf-8 -*-

stestgen.py - spam test generator
- Generates lists of message files as well as shell scripts to run tests against

SpamAssassin
- Selects a random subset of spam and ham messages for training and testing,

creating files of names like "[train|test]filelist[1-5]-5percent.txt".
[By default, the "train" files are the sample size and the "test" files

are (totalsize-samplesize)]

import os.path as ospath
import os
import sys
import glob
import random
import ConfigParser

_DEFAULT_CONFIG_FILE = 'stestgen.properties'
_DEFAULT_SPAM_DIRS = '/home/rhavens/spam/sa/*spam*'
_DEFAULT_HAM_DIRS = '/home/rhavens/spam/sa/*ham*'
_DEFAULT_TRAIN_SCRIPT_NAME = 'train_sa.sh'
_DEFAULT_TEST_SCRIPT_NAME = 'test_sa.sh'

_DNAME_BASE='filelist.txt'
_HAM = 'ham'
_SPAM = 'spam'
_TRAIN = 'train'
_TEST = 'test'
UND = ''
_DEFAULT_INCLUDE_TRAINING_DATA_FOR_TEST=False
_DEFAULT_TRAINING_PERCENT = 10.0
_BALANCE_SET_SIZES = False
_DEBUG_MODE=False
_CONFIG = 'config'
_OS = sys.platform

def read_properties(configfile):
 defaults = {'spam_dirs':_DEFAULT_SPAM_DIRS, 'ham_dirs':_DEFAULT_HAM_DIRS,
 'train_script_name':_DEFAULT_TRAIN_SCRIPT_NAME,

'test_script_name':_DEFAULT_TEST_SCRIPT_NAME,
 'name_base':_DNAME_BASE,

'include_training_data_for_test':_DEFAULT_INCLUDE_TRAINING_DATA_FOR_TEST,
 'training_percent':10.0,

'balance_set_sizes':_DEFAULT_TRAINING_PERCENT,'debug_mode':_DEBUG_MODE}
 config = ConfigParser.ConfigParser(defaults)
 #config.readfp(configfile)
 config.read(configfile)
 return config

www.manaraa.com

103

def get_dir_lists(spam_glob, ham_glob):
 spam_dirs = glob.glob(spam_glob)
 spam_dirs = [x for x in spam_dirs if ospath.isdir(x)]
 ham_dirs = glob.glob(ham_glob)
 ham_dirs = [x for x in ham_dirs if ospath.isdir(x)]
 return spam_dirs, ham_dirs

def get_one_dir_listing(dirname):
 full_path_listing = [dirname+os.sep+x for x in os.listdir(dirname)]
 return full_path_listing

def get_file_lists(spam_dirs, ham_dirs):
 spam_files = []
 ham_files = []

 for each in spam_dirs:
 spam_files.extend(get_one_dir_listing(each))
 for each in ham_dirs:
 ham_files.extend(get_one_dir_listing(each))
 return spam_files, ham_files

def separate_train_test(filelist, sample_percent, incl_train_in_test, src_type):
 if sample_percent >= 100 or sample_percent <=0:
 print 'Sample size must be between 0 and 100'
 sys.exit(1)
 sample_size = int((sample_percent/100.0)*len(filelist))

 print src_type,'file list size='+str(len(filelist))+'; '+str(sample_percent)+'% sample;

Sample size='+str(sample_size)

 #print len(filelist),'-',abs_sample_size
 listlen = len(filelist)
 randlines = []
 while len(randlines) < sample_size:
 nextval = random.randint(1,listlen)
 if nextval not in randlines:
 randlines.append(nextval)
 randlines.sort()
 #print randlines#[0:15]

 train = []
 test = []
 loopnum = 0
 for item in filelist:
 if len(randlines) == 0:
 break
 loopnum += 1
 if loopnum == randlines[0]:
 train.append(item)
 randlines.pop(0)
 else:
 if not incl_train_in_test:
 test.append(item)
 if incl_train_in_test:
 test = filelist
 #print len(train)
 #print len(test)
 return train, test

def write_data(filename, data):

 if _DEBUG_MODE:
 print 'Write',len(data),'lines to',filename
 return

 f_out = open(filename,'w')

www.manaraa.com

104

 try:
 for each in data:
 f_out.write(each)
 f_out.write('\n')
 finally:
 f_out.close()

def write_train_script(script_name, spam_data_name, ham_data_name):
 train_script = '''#!/bin/sh

#Clearing training tables
sa-learn --clear

echo 'Spam training...'
for each in `cat '''+spam_data_name+'''`;
do
 sa-learn --spam $each
done

echo 'Ham training...'
for each in `cat '''+ham_data_name+'''`;
do
 sa-learn --ham $each
done

echo 'Done training'
'''
 write_data(script_name, train_script.split('\n'))
 print 'Training script written as',script_name

def write_test_script(script_name, spam_data_name, ham_data_name):
 test_script = '''#!/bin/sh

echo 'expected_type score threshold'
for each in `cat '''+spam_data_name+'''`;
do
 retval=`spamc -c < $each`
 echo "spam ${retval/\// }"
done

echo 'expected_type score threshold'
for each in `cat '''+ham_data_name+'''`;
do
 retval=`spamc -c < $each`
 echo "ham ${retval/\// }"
done

echo 'Done testing'
'''
 write_data(script_name, test_script.split('\n'))
 print 'Testing script written as',script_name

def write_files(ham_train, ham_test, spam_train, spam_test, tr_script_name, te_script_name,

tr_h_data_name, te_h_data_name, tr_s_data_name, te_s_data_name):
 write_train_script(tr_script_name, tr_s_data_name, tr_h_data_name)
 write_test_script(te_script_name, te_s_data_name, te_h_data_name)
 write_data(tr_h_data_name, ham_train)
 write_data(te_h_data_name, ham_test)
 write_data(tr_s_data_name, spam_train)
 write_data(te_s_data_name, spam_test)

def rebalance_sets(s_tr, s_te, h_tr, h_te):
 if len(s_tr) == len(h_tr):
 return
 elif len(s_tr) > len(h_tr):
 while len(s_tr) > len(h_tr):
 rand_entry = random.randint(0,len(s_tr)-1)
 s_te.append(s_tr.pop(rand_entry))

www.manaraa.com

105

 else:
 while len(h_tr) > len(s_tr):
 rand_entry = random.randint(0,len(h_tr)-1)
 h_te.append(h_tr.pop(rand_entry))
 #Sanity check
 if len(s_tr) != len(h_tr):
 print 'Unequal set lengths after rebalance: s_tr=',len(s_tr),';',len(h_tr)
 print 'Sets rebalanced to',len(s_tr),'entries each'

def start():
 config_file = _DEFAULT_CONFIG_FILE
 if len(sys.argv) > 1:
 if ospath.exists(sys.argv[1]):
 print 'Reading specified configuration file'
 config_file = sys.arg[1]
 props = read_properties(config_file)
 #print props.defaults()
 #print props.items('config')

 spam_dirs, ham_dirs = get_dir_lists(props.get('config','spam_dirs'),

props.get('config','ham_dirs'))
 #print 'SPAM_DIRS=',spam_dirs
 spam_files, ham_files = get_file_lists(spam_dirs, ham_dirs)
 #print 'SPAM_FILES=',spam_files
 spam_train, spam_test = separate_train_test(spam_files,

props.getfloat('config','training_percent'),
props.getboolean('config','include_training_data_for_test'),'Spam')

 ham_train, ham_test = separate_train_test(ham_files,
props.getfloat('config','training_percent'),
props.getboolean('config','include_training_data_for_test'),'Ham')

 if props.getboolean('config','balance_set_sizes'):
 rebalance_sets(spam_train, spam_test, ham_train, ham_test)
 else:
 print 'Set sizes: Spam=',len(spam_train),'; Ham=',len(ham_train)

 #print len(spam_train),',',len(spam_test),'.',len(ham_train),',',len(ham_test)

 tr_h_name = _TRAIN+_UND+_HAM+_UND+props.get('config','name_base')
 tr_s_name = _TRAIN+_UND+_SPAM+_UND+props.get('config','name_base')
 te_h_name = _TEST+_UND+_HAM+_UND+props.get('config','name_base')
 te_s_name = _TEST+_UND+_SPAM+_UND+props.get('config','name_base')

 write_files(ham_train, ham_test, spam_train, spam_test,

props.get('config','train_script_name'), props.get('config','test_script_name'), tr_h_name, te_h_name,
tr_s_name, te_s_name)

if __name__ == '__main__':
 start()

stestgen.properties
#stestgen.properties
[config]
#Name of training script to write
#---default: train_sa.sh
train_script_name=train_sa5-10percent.sh

#Name of test script to write
#---default: test_sa.sh
test_script_name=test_sa5-10percent.sh

#Base name used for data output files (i.e. data files with lists of spam and ham files used for

the scripts)
#---default: filelist.txt
name_base=filelist5-10percent.txt

#Glob of directories which hold spam mail messages
#---default: /home/rhavens/spam/sa/*spam*

www.manaraa.com

106

#Linux
spam_dirs=/home/rhavens/spam/sa/*spam*
#Windows
#spam_dirs=/spam/*spam*

#Glob of directories which hold ham mail messages
#---default: /home/rhavens/spam/sa/*ham*
#Linux
ham_dirs=/home/rhavens/spam/sa/*ham*
#Windows
#ham_dirs=/spam/*ham*

#Include the training data in both the training and testing sets
#-If this is True, the training records will be left in the testing data set. This will slightly

reduced memory utilization
#---default: False
include_training_data_for_test=False

#Sample size (in percent) for training data set
#---default: 10
training_percent=10

#Ensure that spam and ham training data sets are the same size
#--reduces the size of the larger of the two to the size of the smaller
#---default: False
balance_set_sizes=False

#If debug_mode=True, do not write output files
#---default: False
debug_mode=False

gen-altered-list.py

#!/usr/bin/python

import sys
import os
import os.path as ospath
import glob

_TXT='.txt'
basedir='/home/rhavens/spam/sa/'
modified_files_dir=basedir+'modified_files/'#'/home/rhavens/spam/sa/modified_files/'
dirset='''easy_ham
easy_ham_2
hard_ham
spam
spam_2'''.split()

#modified_files='/modified_files/'
extensions = {'.bpreserved':'-b','.hpreserved':'-h','.bsplit':'-bs'}

listfile_dir = '/home/rhavens/Dropbox/code/python/source/'#previously, I added '/runs/thirdrun/'

#for each in os.listdir(listfile_dir):
for listfile in glob.glob(listfile_dir+"*10percent.txt"):#use "*percent.txt" to catch ALL text

files
 #if not each.endswith('.sh'):
 # print each
 for ext in extensions.keys():
 #print listfile,'--',listfile.replace(_TXT,extensions[ext]+_TXT)
 #continue
 f_out = open(listfile.replace(_TXT,extensions[ext]+_TXT),'w')
 try:

www.manaraa.com

107

 f_in = open(listfile)
 try:
 for line in f_in:
 newline = line.replace(basedir,modified_files_dir)

 f_out.write(newline[:newline.rfind('/')]+ext+'/'+newline[newline.rfind('/')+1:])
 finally:
 f_in.close()
 finally:
 f_out.close()

train_sabs1.sh

#!/bin/sh
#TRAIN_LIST_LOC="/home/rhavens/spam/sa/temp/"
TRAIN_LIST_LOC="/home/rhavens/Dropbox/code/python/source/runs/thirdrun"
#SAMPLESIZE=""
SAMPLESIZE="-5percent"

export SA='spamassassin'
export BOGO='bogofilter'
export SB='spambayes'

export TOOL=$SA
#export TOOL=$BOGO
#export TOOL=$SB
echo "Training with ${TOOL}"

RUN=1
if ["x$1" != "x"];
then
 if [$1 -ge 1 -a $1 -le 5];
 then
 RUN=$1
 fi
fi

OUTFILE_TRAIN=train_spam_bs.run.${TOOL}.${RUN}.out
OUTFILE_TEST=test_spam_bs.test.${TOOL}.${RUN}.csv

echo "Test: bodysplit - $RUN - $TOOL" > $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

#Clearing training tables and output file
if [$TOOL == $SA];
then
 sa-learn --clear >> $OUTFILE_TRAIN
else
 if [$TOOL == $BOGO];
 then
 #bogofilter --db-remove-environment > $OUTFILE_TRAIN
 rm ~/.bogofilter/wordlist.db
 echo "Removed ~/.bogofilter/wordlist.db" >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -n >> $OUTFILE_TRAIN
 else
 echo "Invalid tool specified: $TOOL"
 exit 2
 fi
 fi
fi

echo 'Spam training BODY_SPLIT...'
for each in `cat ${TRAIN_LIST_LOC}train_spam_bs_filelist${RUN}.txt`;

www.manaraa.com

108

do
 for f in `ls ${each}*`;
 do
 if [$TOOL == $SA];
 then
 sa-learn --spam $f >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -s < $f >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -s < $f > /dev/null
 fi
 fi
 fi
 done
done

echo 'Ham training...'
for each in `cat ${TRAIN_LIST_LOC}train_ham_bs_filelist${RUN}.txt`;
do
 for f in `ls ${each}*`;
 do
 if [$TOOL == $SA];
 then
 sa-learn --ham $f >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -n < $f >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -s < $f > /dev/null
 fi
 fi
 fi
 done
done

echo 'Done training'
echo 'Done training' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

echo "Running test for SPLIT_BODY sample ${RUN}"
./test_sa1.sh ${RUN} > ${OUTFILE_TEST}

echo 'Done testing' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

train_sah1.sh

#!/bin/sh
TRAIN_LIST_LOC="/home/rhavens/spam/sa/temp/"

export SA='spamassassin'
export BOGO='bogofilter'
export SB='spambayes'

#export TOOL=$SA
#export TOOL=$BOGO
export TOOL=$SB
echo "Training with ${TOOL}"

www.manaraa.com

109

RUN=1
if ["x$1" != "x"];
then
 if [$1 -ge 1 -a $1 -le 5];
 then
 RUN=$1
 fi
fi

OUTFILE_TRAIN=train_spam_h.run.${TOOL}.${RUN}.out
OUTFILE_TEST=test_spam_h.test.${TOOL}.${RUN}.csv

echo "Test: header - $RUN - $TOOL" > $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

#Clearing training tables and output file
if [$TOOL == $SA];
then
 sa-learn --clear >> $OUTFILE_TRAIN
else
 if [$TOOL == $BOGO];
 then
 #bogofilter --db-remove-environment > $OUTFILE_TRAIN
 rm ~/.bogofilter/wordlist.db
 echo "Removed ~/.bogofilter/wordlist.db" >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -n >> $OUTFILE_TRAIN
 else
 echo "Invalid tool specified: $TOOL"
 exit 2
 fi
 fi
fi

echo 'Spam train HEADER_ONLY...'
for each in `cat ${TRAIN_LIST_LOC}train_spam_h_filelist${RUN}.txt`;
do
 if [$TOOL == $SA];
 then
 sa-learn --spam $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -s < $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -s < $each > /dev/null
 fi
 fi
 fi
done

echo 'Ham training...'
for each in `cat ${TRAIN_LIST_LOC}train_ham_h_filelist${RUN}.txt`;
do
 if [$TOOL == $SA];
 then
 sa-learn --ham $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -n < $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then

www.manaraa.com

110

 sb_filter.py -g < $each > /dev/null
 fi
 fi
 fi
done

echo 'Done training'
echo 'Done training' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

echo "Running test for HEADER_ONLY sample ${RUN}"
./test_sa1.sh ${RUN} > $OUTFILE_TEST

echo 'Done testing' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

train_sab1.sh

#!/bin/sh
#TRAIN_LIST_LOC="/home/rhavens/spam/sa/temp/"
TRAIN_LIST_LOC="/home/rhavens/Dropbox/code/python/source/runs/thirdrun"
#SAMPLESIZE=""
SAMPLESIZE="-5percent"

export SA='spamassassin'
export BOGO='bogofilter'
export SB='spambayes'

export TOOL=$SA
#export TOOL=$BOGO
#export TOOL=$SB
echo "Training with ${TOOL}"

RUN=1
if ["x$1" != "x"];
then
 if [$1 -ge 1 -a $1 -le 5];
 then
 RUN=$1
 fi
fi

OUTFILE_TRAIN=train_spam_b.run.${TOOL}.${RUN}.out
OUTFILE_TEST=test_spam_b.test.${TOOL}.${RUN}.csv

echo "Test: body - $RUN - $TOOL" > $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

#Clearing training tables and output file
if [$TOOL == $SA];
then
 sa-learn --clear >> $OUTFILE_TRAIN
else
 if [$TOOL == $BOGO];
 then
 #bogofilter --db-remove-environment > $OUTFILE_TRAIN
 rm ~/.bogofilter/wordlist.db
 echo "Removed ~/.bogofilter/wordlist.db" >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -n >> $OUTFILE_TRAIN
 else
 echo "Invalid tool specified: $TOOL"
 exit 2
 fi

www.manaraa.com

111

 fi
fi

echo 'Spam training BODY_ONLY...'
for each in `cat ${TRAIN_LIST_LOC}train_spam_b_filelist${RUN}.txt`;
do
 if [$TOOL == $SA];
 then
 sa-learn --spam $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -s < $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -s < $each > /dev/null
 fi
 fi
 fi
done

echo 'Ham training...'
for each in `cat ${TRAIN_LIST_LOC}train_ham_b_filelist${RUN}.txt`;
do
 if [$TOOL == $SA];
 then
 sa-learn --ham $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -n < $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -g < $each > /dev/null
 fi
 fi
 fi
done

echo 'Done training'
echo 'Done training' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

echo "Running test for BODY_ONLY sample ${RUN}"
./test_sa1.sh ${RUN}> $OUTFILE_TEST

echo 'Done testing' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

train_safull1.sh

#!/bin/sh
FULL_TRAIN_LIST_LOC="/home/rhavens/Dropbox/code/python/source/runs/firstrun/"

export SA='spamassassin'
export BOGO='bogofilter'
export SB='spambayes'

export TOOL=$SA
#export TOOL=$BOGO
#export TOOL=$SB
echo "Training with ${TOOL}"

RUN=1

www.manaraa.com

112

if ["x$1" != "x"];
then
 if [$1 -ge 1 -a $1 -le 5];
 then
 RUN=$1
 fi
fi

OUTFILE_TRAIN=train_spam_full.run.${TOOL}.${RUN}.out
OUTFILE_TEST=test_spam_full.test.${TOOL}.${RUN}.csv

echo "Test: full - $RUN - $TOOL" > $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

#Clearing training tables and output file
if [$TOOL == $SA];
then
 sa-learn --clear >> $OUTFILE_TRAIN
else
 if [$TOOL == $BOGO];
 then
 #bogofilter --db-remove-environment > $OUTFILE_TRAIN
 rm ~/.bogofilter/wordlist.db
 echo "Removed ~/.bogofilter/wordlist.db" >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -n >> $OUTFILE_TRAIN
 else
 echo "Invalid tool specified: $TOOL"
 exit 2
 fi
 fi
fi

echo 'Spam training FULL MESSAGES...'
for each in `cat ${FULL_TRAIN_LIST_LOC}train_spam_filelist${RUN}.txt`;
do
 if [$TOOL == $SA];
 then
 sa-learn --spam $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -s < $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -s < $each > /dev/null
 fi
 fi
 fi
done

echo 'Ham training...'
for each in `cat ${FULL_TRAIN_LIST_LOC}train_ham_filelist${RUN}.txt`;
do
 if [$TOOL == $SA];
 then
 sa-learn --ham $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $BOGO];
 then
 bogofilter -n < $each >> $OUTFILE_TRAIN
 else
 if [$TOOL == $SB];
 then
 sb_filter.py -g < $each > /dev/null
 fi

www.manaraa.com

113

 fi
 fi
done

echo 'Done training'
echo 'Done training' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

echo "Running test for FULL_MESSAGE sample ${RUN}"
./test_sa1.sh ${RUN} > $OUTFILE_TEST

echo 'Done testing' >> $OUTFILE_TRAIN
date >> $OUTFILE_TRAIN

test_sa1.sh

#!/bin/sh
#FIRSTRUNDIR="/home/rhavens/Dropbox/code/python/source/runs/firstrun/"
FIRSTRUNDIR="/home/rhavens/Dropbox/code/python/source/runs/thirdrun"
#SAMPLESIZE=""
SAMPLESIZE="-5percent"

if [-z $TOOL];
then
 echo "TOOL environment variable is not set. Exiting."
 exit 1
fi

RUN=1
if ["x$1" != "x"];
then
 if [$1 -ge 1 -a $1 -le 5];
 then
 RUN=$1
 fi
fi

echo 'Filter testing...'
echo 'These should all be spam...'
for each in `cat ${FIRSTRUNDIR}test_spam_filelist${RUN}${SAMPLESIZE}.txt`;
do
 if [$TOOL == 'spamassassin'];
 then
 spamc -c < $each
 else
 if [$TOOL == 'bogofilter'];
 then
 bogofilter --verbosity < $each
 else
 if [$TOOL == 'spambayes'];
 then
 sb_filter.py < $each | grep 'X-Spambayes-Classification:'
 fi
 fi
 fi
done

echo 'These should all be ham...'
for each in `cat ${FIRSTRUNDIR}test_ham_filelist${RUN}${SAMPLESIZE}.txt`;
do
 if [$TOOL == 'spamassassin'];
 then
 spamc -c < $each
 else
 if [$TOOL == 'bogofilter'];

www.manaraa.com

114

 then
 bogofilter --verbosity < $each
 else
 if [$TOOL == 'spambayes'];
 then
 sb_filter.py < $each | grep 'X-Spambayes-Classification:'
 fi
 fi
 fi
done

echo 'Done testing'

runset.sh

#!/bin/sh
#runset.sh - run a set of spam tests

export SA1='spamassassin'
export BOGO1='bogofilter'
export SB1='spambayes'

runsetvertical(){
 ./train_sabs-2.sh
 ./train_sabs-2.sh 2
 ./train_sabs-2.sh 3
 ./train_sabs-2.sh 4
 ./train_sabs-2.sh 5
}

runsethorizontal() {
 if [-z $1];
 then
 DATASET=1
 else
 DATASET=$1
 fi
 ./train_safull-2.sh $DATASET
 ./train_sah-2.sh $DATASET
 ./train_sab-2.sh $DATASET
 ./train_sabs-2.sh $DATASET
}

runsa() {
 export TOOL=$SA1
runsetvertical 1
 runsethorizontal 1
 runsethorizontal 2
 runsethorizontal 3
 runsethorizontal 4
 runsethorizontal 5
}

runbogo(){
 export TOOL=$BOGO1
 runsethorizontal 1
 runsethorizontal 2
 runsethorizontal 3
 runsethorizontal 4
 runsethorizontal 5
}
runsb(){
 export TOOL=$SB1
 runsethorizontal 1
 runsethorizontal 2

www.manaraa.com

115

 runsethorizontal 3
 runsethorizontal 4
 runsethorizontal 5
}

for each in '-5percent' '-1percent' '-halfpercent' '-tenthpercent';
do
 export SAMPLESIZE=${each}
 #echo "$SAMPLESIZE"
 #runbogo
 #runsb
 runsa
done
#./train_sabs-2.sh
#./train_sabs-2.sh 2
#./train_sabs-2.sh 3
#./train_sabs-2.sh 4
#./train_sabs-2.sh 5
#./train_safull-2.sh
#./train_sah-2.sh
#./train_sab-2.sh
#./train_sabs-2.sh

#./train_safull-2.sh 2
#./train_sah-2.sh 2
#./train_sab-2.sh 2
#./train_sabs-2.sh 2

#./train_safull-2.sh 3
#./train_sah-2.sh 3
#./train_sab-2.sh 3
#./train_sabs-2.sh 3

#./train_safull-2.sh 4
#./train_sah-2.sh 4
#./train_sab-2.sh 4
#./train_sabs-2.sh 4

#./train_safull-2.sh 5
#./train_sah-2.sh 5
#./train_sab-2.sh 5
#./train_sabs-2.sh 5

echo "Done with set"

data_normalizer.py

#!/usr/bin/python

data_normalizer.py - normalize the output from the 3 spam filtering tools (bogofilter,

spamassassin and spambayes) to csv formats that will be analyzed with R

#Sample Bogofilter:
#Filter testing...
#These should all be spam...
#X-Bogosity: Unsure, tests=bogofilter, spamicity=0.500000, version=1.2.0
#X-Bogosity: Unsure, tests=bogofilter, spamicity=0.500000, version=1.2.0

#Sample SpamBayes

#Sample SpamAssassin

#Filter testing...

www.manaraa.com

116

#These should all be spam...
#X-Spambayes-Classification: spam; 1.00
#X-Spambayes-Classification: spam; 1.00
#X-Spambayes-Classification: spam; 1.00
#X-Spambayes-Classification: spam; 1.00

import sys
import glob
import os.path as ospath

#_DATA_FILE_GLOB="/home/rhavens/Dropbox/code/python/source/runs/fourthrun/test_*_*.test-*.*.*.csv"
_DATA_FILE_GLOB="/home/rhavens/Dropbox/code/python/source/runs/fourthrun/test_*_*.test-

*.spamassassin.?.csv"
_HEADER = ('msg_type','verdict','score')

def parse_bogo_line(msg_type, line):
 if 'X-Bogosity' not in line:
 return []
 parsed_line = None

 sline = line.replace('X-Bogosity:','').split(', ')

 verdict = sline[0].lower()
 #tests = sline[2].split('=')[1]
 score = sline[2].split('=')[1]
 #X-Bogosity: Unsure, tests=bogofilter, spamicity=0.500000, version=1.2.0
 parsed_line = [msg_type, verdict, score]

 return parsed_line

def parse_sa_line(msg_type, line):
 if '/' not in line:
 return []
 parsed_line = None

 sline = line.split('/')
 score = sline[0]
 nscore = float(score)
 #I won't store threshold, as it's always 5 and not very meaningful for my study.
 threshold = sline[1]
 nthreshold = float(threshold)
 verdict = 'ham'
 if nscore >= nthreshold:
 verdict = 'spam'

 #17.7/5.0
 parsed_line = [msg_type, verdict, score]

 return parsed_line

def parse_sb_line(msg_type, line):
 if 'X-Spambayes' not in line:
 return []

 parsed_line = None

 sline = line.replace(';',':').split(':')
 #nscore = float(sline[2].strip())
 verdict = sline[1].strip()
 score = sline[2].strip()

 #X-Spambayes-Classification: spam; 1.00
 parsed_line = [msg_type, verdict, score]

 return parsed_line

def write_out_file(filename, data):

www.manaraa.com

117

 print 'Writing',len(data),'lines to',filename
 #if True: return

 f_out = open(filename,'w')
 try:
 f_out.write('\t'.join(_HEADER))
 f_out.write('\n')

 for line in data:
 if line == None or len(line) < 1:
 continue
 f_out.write('\t'.join(line))
 f_out.write('\n')
 finally:
 f_out.close()

def parse_file(finfo):
 print 'Parsing',finfo["filename"]
 #test_spam_full.test.spamassassin.1-scrubbed-HAMONLY.csv
 newname_SPAM = finfo["filename"].replace(".csv",".parsed.SPAMONLY.csv")
 newname_HAM = finfo["filename"].replace(".csv",".parsed.HAMONLY.csv")
 spamlines = []
 hamlines = []
 f_in = open(finfo['filename'])
 try:
 msg_type = ''
 linenum = 0
 curr_lines = None
 for line in f_in:
 linenum += 1
 parsedline = ''
 if line == None or "Filter testing" in line or 'Done testing' in line or

len(line) < 5:
 continue
 if "should all be spam" in line:
 curr_lines = spamlines
 msg_type = 'spam'
 continue
 if "should all be ham" in line:
 curr_lines = hamlines
 msg_type = 'ham'
 continue
 if curr_lines == None:
 print 'Type identifier missing before line:',linenum,'-',line

 continue

 if finfo['spamfilter'] == 'bogofilter':
 curr_lines.append(parse_bogo_line(msg_type, line))
 elif finfo['spamfilter'] == 'spamassassin':
 curr_lines.append(parse_sa_line(msg_type, line))
 elif finfo['spamfilter'] == 'spambayes':
 curr_lines.append(parse_sb_line(msg_type, line))
 else:
 print 'Invalid spam filter name set:',finfo['spamfilter']
 continue
 #Now, output the parsed line with the new data filename
 finally:
 f_in.close()
 #print len(hamlines),'hamlines'
 #print len(spamlines),'spamlines'
 write_out_file(newname_SPAM, spamlines)
 write_out_file(newname_HAM, hamlines)

def start():
 fileparts = []

www.manaraa.com

118

 filenames = glob.glob(_DATA_FILE_GLOB)
 for each in filenames:
 if each.endswith('ONLY.csv'):
 continue
 splitname = each.split('_')[2].split(".")
 fileparts.append({"filename":each, "manpulation":splitname[0],

"samplesize":splitname[1].replace("test",""), "spamfilter":splitname[2], "samplenumber":splitname[3]})
 #print splitname

 for thisfile in fileparts:
 parse_file(thisfile)

if __name__ == '__main__':
 start()

fourthrun-analysis.R

#!/usr/bin/Rscript
R analysis of fourth run for SpamAssassin data

ver 1.7a

Version info
1.0 - 05/15/10 - initial version
1.01 - 05/30/10 - Updated comments and text output to reflect SpamAssassin data vs other

tools' data
1.5 - 5/30/10 - Refactored to use internal functions for all work
1.6 - 6/28/10 - Reworked VERBOSE and non-VERBOSE output
1.7 - 6/29/10 - Changed to write output directly to a file; added min/max/mean in output

columns; 3)[in progress] report percentage of correct/incorrect categorizations for each data set.
#File naming convention
#test_spam_h.test-tenthpercent.spambayes.5.csv
#test_<ham/spam>_<test_type>.test-<samplesize>.<spamfilter>.<sample_number>.csv
#test_[sp|h]am_[full|h|b|bs].test-[5percent|1percent|halfpercent|tenthpercent].[1-5].csv

VERBOSE=FALSE;#TRUE;
SPAM_EXT="SPAMONLY.csv";
HAM_EXT="HAMONLY.csv";
OUTPUT_FILENAME="fourthrun-analysis-output.csv";
#options(digits=15)

fn_getpath = function()
{
 # ------ Set up main variables ------
 lpath="/home/rhavens/Dropbox/code/python/source/runs/fourthrun/";
 wpath="c:\\db\\My Dropbox\\code\\python\\source\\runs\\fourthrun\\";

 if (.Platform$OS.type == "unix")
 {
 if (VERBOSE) {
 print("Linux platform");
 }
 work_path=lpath;
 # The else keyword below must come on the same line as the closing brace from the

associated if statement
 #retval = system("uname", wait=TRUE) #This picks up CYGWIN uname, so use DOS ver and

reverse logic instead
 } else {
 #only two possible values are 'unix' and 'windows'
 if (VERBOSE) {
 print("most likely Windows platform");
 }
 work_path=wpath;
 }
 return(work_path)

www.manaraa.com

119

}

fn_generate_filenames = function(base_dir) {
 if (VERBOSE) {
 print("------------------------------------");
 print("Generating filename lists...");
 }
 manipulation=c("full","h","b","bs");
 samplesize=c("5percent","1percent","halfpercent","tenthpercent");
 spamfilter=c("bogofilter","spambayes","spamassassin");
 samplenumber=1:5;
 filefilter=c("HAMONLY","SPAMONLY")

 f_exists=vector();
 f_not_exists=vector();

 for (m in manipulation) {
 for (ss in samplesize) {
 for (sf in spamfilter) {
 for (sn in samplenumber) {
 filename_root = paste("test_spam_",m,".test-

",ss,".",sf,".",sn,".parsed.", sep="");
 filename_spam = paste(filename_root,SPAM_EXT,sep="");
 filename_ham = paste(filename_root,HAM_EXT,sep="");

 fa_spam=file.access(names=paste(base_dir,filename_spam,sep=""));

 fa_ham=file.access(names=paste(base_dir,filename_ham,sep=""));

 if (fa_spam == 0 && fa_ham == 0) {
 f_exists = c(f_exists,filename_root);

 } else {

 f_not_exists = c(f_not_exists,filename_root);
 }
 }
 }
 }
 }
 if (VERBOSE) {
 print(sprintf("%d files do not exist.",length(f_not_exists)));
 print(sprintf("%d files do exist.",length(f_exists)));
 }
 return(list(exist_list=f_exists,nonexist_list=f_not_exists));
}

fn_loaddata = function(full_filename,sep="\t")
{
 loaded_data = read.table(full_filename, header=TRUE, sep=sep, na.strings="NA", dec=".",

strip.white=TRUE)
 return(loaded_data)
}

fn_summary_stats = function(data_spam, data_ham)
{
 sum_spam=summary(data_spam);
 sum_ham=summary(data_ham);
 if (VERBOSE) {
 print("-------");
 print('Summary statistics for each spam and ham:');
 print(sum_spam);
 print(sum_ham);
 }

www.manaraa.com

120

 summary_stats=list("spam_mean"=mean(data_spam$score), "ham_mean"=mean(data_ham$score),
"spam_min"=min(data_spam$score), "spam_max"=max(data_spam$score), "ham_min"=min(data_ham$score),
"ham_max"=max(data_spam$score));

 return(summary_stats);
}

fn_basic_stats = function(dataspam, dataham){
 sds=sd(dataspam$score);
 sdh=sd(dataham$score)
 vs=var(dataspam$score);
 vh=var(dataham$score);
 if (VERBOSE) {
 print("-------");
 print('Std Deviation & Variance:');
 print(paste("spam-stddev: ",sds,"; variance",vs,sep=""));
 print(paste("ham-stddev: ",sdh,"; variance",vs,sep=""));
 }
 return(list("sds"=sds,"sdh"=sdh,"vs"=vs,"vh"=vh));
}

fn_calc_hitrate = function(this_data){
 total_len = nrow(this_data)#length(this_data$type);
 correct = 0;
 for (i in 1:total_len) {
 thisrow = this_data[i,];
 t1=as.character(thisrow$msg_type);
 if (is.null(t1)){
 t1=as.character(thisrow$type);
 }

 v1=as.character(thisrow$verdict);
 if (!is.null(t1) && !is.null(v1)) {
 if (paste(t1,"x") == paste(v1,"x")) {
 correct = correct + 1;
 }# else {
 #if (v1 != "unsure"){
 # print(paste(v1,"!=",t1));
 #}
 #}
 } #else {
 # print(paste(v1,"-",t1));
 #}
 }
 if (VERBOSE) {
 print(paste("correct/total: ",correct,'/',total_len,sep=""));
 }

 hitrate = 100.0*(correct/total_len);
 return(hitrate);
}

fn_analyze = function(base_path, filebase) {
 test_type="none";
 test_score=-100;
 hamname=paste(filebase,HAM_EXT,sep="")
 spamname=paste(filebase,SPAM_EXT,sep="")
 if (VERBOSE) {
 print(paste("---Analyzing",spamname,'and',hamname));
 }

 spam_filename=paste(base_path, spamname, sep="");
 ham_filename=paste(base_path, hamname, sep="");
 data_spam = fn_loaddata(spam_filename);
 data_ham = fn_loaddata(ham_filename);

 summary_stats = fn_summary_stats(data_spam, data_ham);
 hitrate_spam = fn_calc_hitrate(data_spam)

www.manaraa.com

121

 hitrate_ham = fn_calc_hitrate(data_ham);
 var_info = fn_basic_stats(data_spam,data_ham);
 var_ratio = var_infovh/var_infovs;

 #print(var_ratio);
 #if ((is.nan(var_ratio)) ||(var_ratio < 0.1) || (var_ratio >= 10)) {
 wtest = wilcox.test(data_spam$score, data_ham$score);
 if (VERBOSE) {
 print("Wilcoxcon test");
 #print(paste("Wilcoxon p-value:",wtest$p.value));
 print(wtest);
 }
 test_type="Wilcoxon";
 test_score=wtest$p.value;
 #} else {
 # ttest = t.test(data_spam$score, data_ham$score);
 # if (VERBOSE) {
 # print("T test");
 # print(paste("T-test p-value:",ttest$p.value));
 # }
 # test_type="Student's T";
 # test_score=ttest$p.value;
 #}

 return(list("spam_filename"=spamname, "ham_filename"=hamname,

"percent_correct_spam"=hitrate_spam, "percent_correct_ham"=hitrate_ham, "test_type"=test_type,
"test_score"=test_score, "spam_mean"=summary_stats$spam_mean, "ham_mean"=summary_stats$ham_mean,
"spam_min"=summary_stats$spam_min, "spam_max"=summary_stats$spam_max, "ham_min"=summary_stats$ham_min,
"ham_max"=summary_stats$ham_max, "sds"=var_info$sds, "sdh"=var_info$sdh, "vs"=var_info$vs,
"vh"=var_info$vh));

}

fn_start = function(){
 base_path = fn_getpath();

 file_lists = fn_generate_filenames(base_path);
 exists_list = file_lists$exist_list;
 nonexists_list = file_lists$nonexist_list;
 if (VERBOSE && length(nonexists_list) > 0) {
 print("These generated filenames do not exist:");
 print(paste(nonexists_list,sep="\n"));
 }
 if (VERBOSE) {
 print("-------");
 print('Analysis:');
 print("Are the Spam and Ham sets for any given test statistically different?");
 print("If the variance is less than an order of magnitude different between the

pairs, ");
 print("Student's T test is used. Otherwise the Wilcoxcon test is used.");
 print("");
 }

 f_out=file(OUTPUT_FILENAME,"w");
 cat(c("manipulation","samplesize","tool","samplenumber","percent_correct_spam","percent_co

rrect_ham","test_type","test_score","spam_min","spam_mean","spam_max","spam_std_dev","spam_variance","ham_
min","ham_mean","ham_max","ham_std_dev","ham_variance","spam_filename","ham_filename"),file=f_out,sep="\t"
);

 cat("\n", file=f_out);
 for (this_filebase in exists_list) {
 #strsplit returns a list. To change this to an array of strings ("character"

classes), use unlist on the strsplit output.
 split_filebase = unlist(strsplit(this_filebase,"\\."));
 manipulation=unlist(strsplit(split_filebase[1],"_"))[3];
 samplesize=unlist(strsplit(split_filebase[2],'-'))[2];
 tool=split_filebase[3];
 samplenumber=split_filebase[4];
 retval = fn_analyze(base_path, this_filebase);

www.manaraa.com

122

 cat(c(manipulation, samplesize, tool, samplenumber, retval$percent_correct_spam,
retval$percent_correct_ham, retval$test_type, retval$test_score, retval$spam_min, retval$spam_mean,
retval$spam_max, retval$sds, retval$vs, retval$ham_min, retval$ham_mean, retval$ham_max, retval$sdh,
retval$vs, retval$spam_filename, retval$ham_filename),file=f_out, sep="\t");

 cat("\n", file=f_out);
 }
 close(f_out);
}

#---------Flow starts here----------
fn_start();

w=warnings();
if (length(w) > 0){
 warnings();
}

quit();

randlines.py

#!/usr/bin/python

Randomly select a specific number of lines from one text file into another text file

Version 1.1

1.0 - 12/23/09 - rwh - Initial version
1.01 - 12/24/09 - rwh - Cleaned up output for stdout; added verbose output of line numbers to be

sampled
1.02 - 01/04/10 - rwh - Added output to tell what percentage of file was sampled; changed code

to UNIX newlines
1.03 - 01/04/10 - rwh - Moved percentage size output after checks for bogus

sample_size/file_size values
1.04 - 03/27/10 - rwh - Fixed an error string for when a non-existent input file is specified;

fixed date stamps for version info.
1.05 - 08/03/10 - rwh - Updated help
1.06 - 08/14/10 - rwh - the previous update had removed a needed exception handler line, causing

it not to run
1.1 - 08/14/10 - rwh - Added ability to specify samplines as a floating-point percentage.
1.1 - 11/13/10 - rwh - Added a hidden parameter to enable the cautious sampling checks I

originally made mandatory.
These checks were supposed to keep the sampler from continuing for a long time,

but ended up causing less than full samples
to be taken if the number of samples was close to the length of the file. You

can still specify it, but since I'm fairly sure
it was a bad idea in the first place and yet want to hedge my bets on it, I've

hidden the functionality rather than removed it.

Future:
Optimize, optimize, optimize
- Currently just checks [0] of the line array rather than "if number in

lines_list" since the list will be sorted lowest to highest the same as the line counting scheme.
Allow samplines to be specified as a percentage; handle decimal percentages.
Allow the user to specify that the line number sampled will be prepended to the line; need

to determine a separator to use or allow the user to specify one.

import sys
import getopt
import os
import os.path as ospath
import random

_VERSION = 1.11

www.manaraa.com

123

#I had to make this a class so that _verbose could be properly referenced. Sadly, I don't know

why it would not show up as a global, even though _DEFAULT_SAMPLE_LINES did....
class randlines:
 '''Select a specified number of lines as a random sample of a specified input text file'''
 _DEFAULT_SAMPLE_LINES = 100
 _DEFAULT_NUM_LINES = -1
 _verbose = False
 _DASH = '-'

 def usage(self):
 '''Show the usage of the program'''
 print '''randlines.py '''+str(_VERSION)+'''
Usage: randlines.py -i <inputfile> [options]
 -i, --inputfile <filename> Source file (required)
 -o, --outputfile <filename> Output file (Use "-" for stdout; default =

<srcfile>.<sample_size>.sample)
 -s, --samplines <number> Number of sample lines to extract (default = 100)
 Can also specify as a decimal percent (e.g. 1% or 10.5%)
 -n, --numlines <number> Number of lines in file (default = read from input file)
 -v, --verbose Turn on verbose logging
 -h, --help This help'''
 #-a, --cautious Cautious sampling; might not get a full sample size, but

minimizes sampling time

 def get_params(self):
 '''Parse out the command-line parameters'''
 try:
 opts, args = getopt.getopt(sys.argv[1:], "i:o:s:n:ahv",

["inputfile=","outputfile=","samplines=","numlines=","cautious","help","verbose"])
 except getopt.GetoptError, err:
 # print help information and exit:
 print str(err) # will print something like "option -a not recognized"
 self.usage()
 sys.exit(1)
 infilename = None
 outfilename = None
 numlines = self._DEFAULT_NUM_LINES
 samplines = self._DEFAULT_SAMPLE_LINES
 sample_percent = -1
 cautious = False
 for opt, arg in opts:
 if opt in ('-i','--inputfile'):
 infilename = arg
 elif opt in ('-o','--outputfile'):
 outfilename = arg
 elif opt in ('-a','--cautious'):
 cautious = True
 elif opt in ('-n', '--numlines'):
 if arg.isdigit():
 numlines = int(arg)
 else:
 print 'Number of file lines must be specified as a

number:',arg
 print 'Defaulting to read lines from file.'
 self.usage()
 sys.exit(1)
 elif opt in ('-s', '--samplines'):
 if '%' in arg:
 s = arg.replace('%','')
 try:
 sample_percent = float(s)/100.0
 except:
 print 'The specified sample percent is not a

number:',arg
 self.usage()
 sys.exit(1)
 else:
 if arg.isdigit():

www.manaraa.com

124

 samplines = int(arg)
 else:
 print 'Number of sample lines must be specified

as a number:',arg
 self.usage()
 sys.exit(1)
 elif opt in ('-v','--verbose'):
 self._verbose = True
 elif opt in ('-h', '--help'):
 self.usage()
 sys.exit()
 else:
 assert False, "Unsupported option specified"
 # ...
 if infilename is None:
 print 'Please specify an input filename'
 self.usage()
 sys.exit(1)
 if outfilename is None or outfilename == '' or outfilename == infilename:
 if sample_percent > 0:
 outfilename =

infilename+'.'+str(100*sample_percent)+'percent.sample'
 else:
 outfilename = infilename+'.'+str(samplines)+'.sample'
 if self._verbose:
 print 'Defaulting to output file name: ',outfilename
 if not ospath.exists(infilename):
 print 'Specified filename does not exist:',infilename
 self.usage()
 sys.exit(1)
 if samplines < 1 and sample_percent < 1:
 print 'Specified number of sample lines or sample percent < 1, defaulting

to 1 sample line.'
 samplines = 1

 return infilename, outfilename, samplines, sample_percent, numlines, cautious

 def get_sample_line_numbers(self, linecount, sample_size, cautious):
 '''Randomly select the line numbers to sample from the source file'''
 count = 0;
 retval = []
 #for count in range(1,linecount):
 tries = 0
 while len(retval) < sample_size:
 tries += 1
 #Put a maximum number of samples on it -- 1 billion sounds good enough to

me
 if (cautious or tries > 1000000000) and tries > linecount*2:
 print 'Too many duplicate lines chosen...breaking loop.'#this

should never happen
 break
 nextval = random.randint(1,linecount)
 if nextval not in retval:
 retval.append(nextval)
 retval.sort()
 if self._verbose:
 if len(retval) <= 100:
 print 'Sampled line numbers:',','.join([str(x) for x in retval])
 else:
 print 'Sampled line numbers (trimmed to the first

100):',','.join([str(x) for x in retval[:100]])
 return retval

 def get_lines(self, in_filename, out_filename, sample_line_count, sample_percent,

num_lines, cautious):
 '''Get the sample lines and write them to the output'''
 linecount = 0

www.manaraa.com

125

 if num_lines != self._DEFAULT_NUM_LINES:
 if self._verbose:
 print 'Using specified number of lines in file:',num_lines
 linecount = num_lines
 else:
 if self._verbose:
 print 'Getting line count from',in_filename,'...'
 f = open(in_filename)
 try:
 for line in f:
 linecount += 1
 finally:
 f.close()
 #if self._verbose:
 # print linecount,'lines in file'
 print linecount,'lines in file'

 #print '=-->',sample_line_count,'-',sample_percent,'--',round(linecount *

sample_percent)
 if sample_percent > 0:
 sample_line_count = int(round(linecount * sample_percent))
 if self._verbose:
 print (100*sample_percent),'% sample of',linecount,'lines

is',sample_line_count,'lines.'

 if sample_line_count >= linecount:
 print 'Line sample size ('+str(sample_line_count)+') >= lines in file

('+str(linecount)+'). Exiting.'
 sys.exit(2)
 print str(round(float(sample_line_count)/float(linecount),5)*100.0)+'% sample

size'
 sample_line_nums = self.get_sample_line_numbers(linecount, sample_line_count,

cautious)

 #if self._verbose:
 # print 'Sampling',sample_line_count,' lines

from',in_filename,'into',out_filename

 out_tail = ''
 if out_filename == self._DASH:
 out_tail = 'to stdout'
 #print 'Sampling',sample_line_count,' lines from',in_filename,'to stdout'
 else:
 out_tail = 'into '+out_filename
 #print 'Sampling',sample_line_count,' lines

from',in_filename,'into',out_filename
 if sample_percent > 0:
 print 'Sampling',sample_line_count,' lines (',sample_percent,'%)

from',in_filename,out_tail
 else:
 print 'Sampling',sample_line_count,' lines from',in_filename,out_tail
 #print 'Sampling',sample_line_count,' lines from',in_filename,'into',out_filename
 count = 0
 written_lines = 0
 #Handle stdout vs a filename
 if out_filename == self._DASH:
 f_out = sys.stdout;
 else:
 f_out = open(out_filename,'w')

 try:
 f_in = open(in_filename)
 try:
 for line in f_in:
 count += 1
 if count == sample_line_nums[0]:#in sample_line_nums:
 written_lines += 1
 f_out.write(line)
 sample_line_nums.remove(count)

www.manaraa.com

126

 if len(sample_line_nums) == 0:
 break
 finally:
 f_in.close()
 finally:
 if out_filename == self._DASH:
 f_out = None
 else:
 f_out.close()
 if out_filename == self._DASH:
 out_filename = 'stdout'
 if self._verbose:
 print written_lines,'lines written to',out_filename
 #print

in_filename,self._DASH,out_filename,self._DASH,sample_line_count,self._DASH,linecount,self._DASH,sample_li
ne_nums

 def start(self):
 '''The action of the class starts here'''
 in_filename, out_filename, samplines, sample_percent, numlines, cautious =

self.get_params()
 sample_line_numbers = self.get_lines(in_filename, out_filename, samplines,

sample_percent, numlines, cautious)

if __name__ == '__main__':
 '''Running from a command line begins here'''
 print 'randlines.py starting...'
 rl = randlines()
 rl.start()
 print '...done.'

l_train.py

#!/usr/bin/python
-*- coding: utf-8 -*-

l_train.py - log file spam-filter trainer

Version info:
1.0 - 07/24/10 (rwh) - Initial version

import sys
import subprocess
import l_salib

Pull in the local constants -- used by both l_train and l_test
from l_check_common import *

#Controls whether to run the actual spam filter tools or not
_NO_RUN = False#True

class l_train():
 verbose = False

 def usage(usage):
 '''Show the usage of the program'''
 print '''Usage: l_train.py -s <inputfile> [options]
 -s, --spamfile <filename> Spam source file (required)
 -a, --hamfile <filename> Ham source file (required)
 -f, --filtertool Spam filter tool [spamassassin|spambayes|bogofilter] (Default:

spamassassin)
 -c, --chainwords <number> Number of words to chain together before

www.manaraa.com

127

 running through spam filter (Default=1]
 -j, --chainjoinchar character to join words for chainwords (Default=_)
 -t, --stackchains Use all chain lengths up to chainwords (Default=False)
 -n, --normalizenumbers Normalize numbers to zeros (0)
 -o, --noclear Do not clear previous filter before training
 -l, --logtype Type of log

[syslog|syslog_b|syslog_c|syslog_i|syslog_n|websphere|websphere_c|applog_fhd] (Default:applog_fhd)
 -h, --help This help

Make sure to use the same settings for training and testing.

Examples:

l_train.py --normalizenumbers
 Turn the phrase 192,168.1.1 to 000.000.0.0

l_train.py --chainwords=3
 Turn the phrase "Now is the time for all" into the line
 "Now_is_the is_the_time the_time_for time_for_all" before analysis

l_train.py --chainwords=3 --chainjoinchar=Q --stackchains
 Turn the phrase "Now is the time for all" into the line
 "NowQisQthe isQtheQtime theQtimeQfor timeQforQall NowQis isQthe theQtime
 timeQfor forQall Now is the time for all " before analysis
'''

 def train_line(self, line, cmd_line):
 '''Train the filter with a given log line'''
 cat_mail_lines = MAIL_TEMPLATE.replace(MESSAGE_HERE, line)
 if _NO_RUN:
 print '-------------------------'
 print 'Message text:', cat_mail_lines
 print '--'
 print 'Command:', cmd_line
 print '========================='

 else:
 p1 = subprocess.Popen([cat_mail_lines], stdout=subprocess.PIPE,

shell=True)
 p2 = subprocess.Popen(cmd_line, stdin=p1.stdout, stdout=subprocess.PIPE,

shell=True)
 output = p2.communicate()[0]
 if self.verbose:
 print 'OUTPUT:',output

 def train(self, data, msg_type):
 '''Train for all log lines in a given file'''
 filename = data[msg_type][l_salib.VAL]
 tool = data[TOOL][l_salib.VAL]
 chain_len = data[CHAIN_LEN][l_salib.VAL]
 parsed_lines = 0
 non_parsed_lines = 0

 print 'Training from',filename,'...'
 line_count = 0
 f_in = open(filename)
 try:
 #WebSphere logs can be multi-line, so state is stored in prevline; start

fresh if this is a WAS log.
 if data[LOGTYPE][l_salib.VAL] == WEBSPHERE:
 l_salib.prevline = None

 for line in f_in:
 if line.startswith('#') or len(line) < 10:
 continue
 line_count += 1
 p_line = None
 if data[LOGTYPE][l_salib.VAL] == WEBSPHERE:

www.manaraa.com

128

 #need to be able to handle multi-line entries in this
code

 p_line, l_salib.prevline =
l_salib.parse_line_text(data[LOGTYPE][l_salib.VAL], line)

 #If the line is not parsed correctly, just skip it.
 if p_line == None:
 print 'Skipping multiline entry...'
 continue
 else:
 p_line, l_salib.prevline =

l_salib.parse_line_text(data[LOGTYPE][l_salib.VAL], line)
 if p_line == None or len(p_line) < 5 or len(p_line[5]) < 5:
 print 'Error parsing line:',line
 non_parsed_lines += 1
 continue
 parsed_lines += 1

 msg = p_line[5].replace('\r','').replace('\n','').strip()
 if data[NORM_NUM][l_salib.VAL]:
 msg = l_salib.normalize_numbers(msg)
 if self.verbose:
 print '_ORIG__>', line
 print '_PARSED_>', msg
 print 'Training as',msg_type

 text = msg
 if self.verbose:
 print '*Original line:',line
 print '*Parsed line:',text
 #Get word chains if necessary
 text = l_salib.get_chained_words(text, chain_len,

data[CHAIN_JOIN_CHAR][l_salib.VAL])

 #Now, do the actual training for this line
 self.train_line(text, HAM_SPAM_CMD_LINES[msg_type][tool])
 if self.verbose and line_count % 100:
 print '.',

 finally:
 f_in.close()
 if self.verbose:
 print ''
 print '...done training for',line_count,'non-comment, non-blank',msg_type,'lines'
 print parsed_lines,'lines parsed correctly;',non_parsed_lines,'lines not parsed

correctly.'

 def clear_filter(self, tool):
 '''Clear the given filter'''
 try:
 retcode = subprocess.check_call(CMD_CLEAR_FILTER[tool], shell=True);
 if retcode != 0:
 print 'An error occurred while clearing',tool,'filter.

Command:',_CMD_CLEAR_FILTER[tool]
 sys.exit(1)
 else:
 if self.verbose:
 print tool,'filter cleared'
 except:
 print 'An exception occurred while clearing',tool,'filter.

Commmand:',_CMD_CLEAR_FILTER[tool]

 def start(self):
 '''Start the work here'''
 #Specify props needed, types, default values, etc.
 short_params = "a:s:c:j:f:l:tnovh"
 long_params =

["hamfile=","spamfile=","chainwords=","chainjoinchar=","filtertool=","stackchain","logtype=","normalizenum
bers","noclear","verbose","help"]

www.manaraa.com

129

 data = {
 SPAMFILE:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-s',l_salib.LNAME:'--

spamfile',l_salib.VAL:None, l_salib.REQUIRED:True, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},
 HAMFILE:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-a',l_salib.LNAME:'--

hamfile',l_salib.VAL:None, l_salib.REQUIRED:True, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},
 TOOL:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-f',l_salib.LNAME:'--

filtertool',l_salib.VAL:SA, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},
 CHAIN_LEN:{l_salib.TYPE:int.__name__,l_salib.SNAME:'-c',l_salib.LNAME:'--

chainwords',l_salib.VAL:DEFAULT_CHAIN_LEN, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 CHAIN_JOIN_CHAR:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-
j',l_salib.LNAME:'--chainjoinchar',l_salib.VAL:DEFAULT_CHAIN_JOIN_CHAR, l_salib.REQUIRED:False,
l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 CHAIN_STACK:{l_salib.TYPE:int.__name__,l_salib.SNAME:'-
t',l_salib.LNAME:'--stackchain',l_salib.VAL:DEFAULT_CHAIN_STACK, l_salib.REQUIRED:False,
l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 LOGTYPE:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-l',l_salib.LNAME:'--
logtype',l_salib.VAL:DEFAULT_LOGTYPE, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 NORM_NUM:{l_salib.TYPE:None,l_salib.SNAME:'-n',l_salib.LNAME:'--
normalizenumbers',l_salib.VAL:False, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 NOCLEAR:{l_salib.TYPE:None,l_salib.SNAME:'-o',l_salib.LNAME:'--
noclear',l_salib.VAL:False, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 VERBOSE:{l_salib.TYPE:None,l_salib.SNAME:'-v',l_salib.LNAME:'--
verbose',l_salib.VAL:self.verbose, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 HELP:{l_salib.TYPE:None,l_salib.SNAME:'-h',l_salib.LNAME:'--
help',l_salib.VAL:False, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 }

 #Get properties
 props = l_salib.get_params(sys.argv[1:], short_params, long_params, data, self)

 if props[HELP][l_salib.VAL]:
 self.usage()
 sys.exit(0)
 #----Validate properties
 #verbose
 if props[VERBOSE][l_salib.VAL]:
 self.verbose = True

 #ham input file
 if props[SPAMFILE][l_salib.VAL] is None:
 print 'Please specify a spam input file'
 self.usage()
 sys.exit(1)
 else:
 print 'Training with spam file:',props[SPAMFILE][l_salib.VAL]

 #input file
 if props[HAMFILE][l_salib.VAL] is None:
 print 'Please specify a ham input file'
 self.usage()
 sys.exit(1)
 else:
 print 'Training with ham file:',props[HAMFILE][l_salib.VAL]

 #spam filter tool
 if props[TOOL][l_salib.VAL] is None:
 print 'Defaulting to filter tool: SpamAssassin'
 props[TOOL][l_salib.VAL] = SA
 else:
 props[TOOL][l_salib.VAL] = props[TOOL][l_salib.VAL].lower()
 if props[TOOL][l_salib.VAL] in (SA, SB, BOGO):
 print 'Spam filter tool:',props[TOOL][l_salib.VAL]
 else:
 print 'Invalid spam filter tool

specified:',props[TOOL][l_salib.VAL]

www.manaraa.com

130

 print 'Must be spamassassin, spambayes or bogofilter.'
 print 'Default is spamassassin.'
 self.usage()
 sys.exit(4)

 #validate logtype
 if props[LOGTYPE][l_salib.VAL] is None:
 props[LOGTYPE][l_salib.VAL]=APPLOG_FHD
 else:
 props[LOGTYPE][l_salib.VAL] = props[LOGTYPE][l_salib.VAL].lower()
 valid_vals = (SYSLOG,WEBSPHERE, l_salib.SYSLOG_B, l_salib.SYSLOG_C,

l_salib.SYSLOG_I, l_salib.SYSLOG_N, l_salib.WEBSPHERE_C, l_salib.APPLOG_FHD)
 if props[LOGTYPE][l_salib.VAL] not in valid_vals:
 print 'Invalid logtype specified:',props[LOGTYPE][l_salib.VAL]
 print 'Must be '+' '.join(valid_vals)+'. (Default is

'+DEFAULT_LOGTYPE+')'
 self.usage()
 sys.exit(1)
 else:
 if props[LOGTYPE][l_salib.VAL] == SYSLOG:
 props[LOGTYPE][l_salib.VAL] = l_salib.SYSLOG_I
 elif props[LOGTYPE][l_salib.VAL] == WEBSPHERE:
 props[LOGTYPE][l_salib.VAL] = l_salib.WEBSPHERE_C
 if self.verbose:
 print 'Log file type:',props[LOGTYPE][l_salib.VAL]

 #chain length
 chainlen = props[CHAIN_LEN][l_salib.VAL]
 if chainlen < 1:
 if self.verbose:
 print 'Chain length < 1; defaulting to 1'
 props[CHAIN_LEN][_VAL]=1
 elif chainlen > CHAIN_LEN_MAX:
 if self.verbose:
 print 'Chain length > CHAIN_LENGTH_MAX. Defaulting

to',CHAIN_LEN_MAX
 props[CHAIN_LEN][l_salib.VAL]=CHAIN_LEN_MAX

 if props[CHAIN_LEN][l_salib.VAL] != DEFAULT_CHAIN_LEN:
 if self.verbose:
 print 'Chaining',props[CHAIN_LEN][l_salib.VAL],'words together

for structure matching.'

 #normalize numbers
 if props[NORM_NUM][l_salib.VAL]:
 if self.verbose:
 print 'Normalizing numbers to 0'

 #Clear the spam filter unless otherwise specified
 if not props[NOCLEAR][l_salib.VAL]:
 self.clear_filter(props[TOOL][l_salib.VAL])

 #print props

 self.train(props, SPAMFILE)
 self.train(props, HAMFILE)

if __name__ == '__main__':
 ltr = l_train()
 try:
 ltr.start()
 except KeyboardInterrupt, ex:
 print '\nInterrupted by user.'

www.manaraa.com

131

l_test.py

#!/usr/bin/python
-*- coding: utf-8 -*-

l_test.py - log file spam-filter tester

Version info:
0.9 - 07/31/10 (rwh) - Initial version
1.0 - 08/20/10 (rwh) - Added rawoutput and printmessage capabilities; tuned for final use.
1.1 - 08/25/10 (rwh) - Added handling of stdin as a log entry source; changed rawoutput to

outputtype to allow 3 output types: raw (r), metrics_only (m) and log_metrics (l);
fixed a bug that caused bogofilter

output to be doubled.
1.2 - 09/04/10 (rwh) - Added WebSphere log parsing. Tricky because WAS logs can be

multiline.
1.3 - 12/4/10 (rwh) - Added printline capability.

import sys
import subprocess
import l_salib
import re
import datetime
import time

Pull in the local constants -- used by both l_train and l_test
from l_check_common import *

#Version info
_VERSION = '1.3'

#Controls whether to run the actual spam filter tools or not
_NO_RUN = False#True

class l_test():
 verbose = False
 very_verbose = False
 date_regex = re.compile('\d+\.\d+\d+\s+(\d+\-\d+\-\d+\s\d+\:\d+\:\d+)\,\d+')
 #e.g.: 2010-11-12 18:01:25
 date_format = '%Y-%m-%d %H:%M:%S'

 def usage(usage):
 '''Show the usage of the program'''
 print '''Usage: l_test.py -s <inputfile> [options]
 -i, --inputfile <filename> Log source file ; use '-' for STDIN (required)
 -f, --filtertool Spam filter tool [spamassassin|spambayes|bogofilter] (Default:

spamassassin)
 -c, --chainwords <number> Number of words to chain together before
 running through spam filter (Default=1]
 -j, --chainjoinchar <char> character to join words for chainwords

(Default='''+DEFAULT_CHAIN_JOIN_CHAR+''')
 -t, --stackchains Use all chain lengths up to chainwords (Default=False)
 -n, --normalizenumbers Normalize numbers to zeros (0)
 -l, --logtype Type of log

[syslog|syslog_b|syslog_c|syslog_i|syslog_n|websphere|websphere_c|applog_fhd] (Default:applog_fhd)
 -o, --outputtype <r|m|l|f> Print the output in raw (r), metric_only (m) or

metric_log (l) or metric_full_log (f) format (Default='''+DEFAULT_OUTPUT_TYPE+''')
 -p, --printmessage Print the message after the score. Mutually exclusive

from -r (Default=False)
 -r, --printline Print the raw line after the score. Mutually exclusive from -p

(Default=False)
 -v, --verbose
 -h, --help This help

Make sure to use the same settings for training and testing.

www.manaraa.com

132

Examples:

l_train.py --normalizenumbers
 Turn the phrase 192,168.1.1 to 000.000.0.0

l_train.py --chainwords=3
 Turn the phrase "Now is the time for all" into the line
 "Now_is_the is_the_time the_time_for time_for_all" before analysis

l_train.py --chainwords=3 --chainjoinchar=Q --stackchains
 Turn the phrase "Now is the time for all" into the line
 "NowQisQthe isQtheQtime theQtimeQfor timeQforQall NowQis isQthe theQtime
 timeQfor forQall Now is the time for all " before analysis
'''

 def get_date_values(self, line):
 '''Extract the date values from a line'''
 try:
 m = re.search(self.date_regex, line)
 date_text = m.group(1)
 dt = time.strptime(date_text, self.date_format)
 retval = (str(long(time.mktime(dt))), m.group(1))
 # 411386.125 2010-11-12 18:01:25,952 WARN
 except Exception, ex:
 retval = ('','')
 return retval

 def print_metrics(self, tool, input_line, input_message, output, print_line=False,

print_message=False):
 '''Print the metrics output by a given filter tool'''
 add_line=''
 if print_line:
 add_line = '\t'+input_line.replace('\r','').replace('\n','')
 elif print_message:
 add_line = '\t'+input_message.replace('\r','').replace('\n','')
 if tool == SB:
 lines = output.replace('\r','')
 for line in lines.split('\n'):
 if 'X-Spambayes-Classification' in line:
 sline = line.replace('X-Spambayes-Classification:

','').split(';')
 date_values = self.get_date_values(add_line)
 print

sline[0].strip()+'\t'+sline[1].strip()+'\t'+date_values[0]+'\t'+date_values[1]+'\t'+add_line
 break
 elif tool == SA:
 lines = output.replace('\r','')
 for line in lines.split('\n'):
 if '/' in line:
 sline = line.strip().split('/')
 #411386.125 2010-11-12 18:01:25,952 WARN
 date_values = self.get_date_values(add_line)
 print

sline[0]+'\t'+sline[1]+'\t'+date_values[0]+'\t'+date_values[1]+'\t'+add_line
 break
 elif tool == BOGO:
 lines = output.replace('\r','')
 for line in output.split('\n'):
 if 'X-Bogosity' in line:
 sline = output.strip().split(',')
 date_values = self.get_date_values(add_line)
 print sline[0].replace('X-Bogosity:

','')+'\t'+sline[2].replace('spamicity=','')+'\t'+date_values[0]+'\t'+date_values[1]+'\t'+add_line
 break
 #print '>',line

 def test_line(self, raw_line, line, cmd_line, tool, output_type):
 '''Test a line against a given spam filter'''

www.manaraa.com

133

 cat_mail_lines = MAIL_TEMPLATE.replace(MESSAGE_HERE, line)

 if _NO_RUN:
 print 'Message text:',cat_mail_lines
 print 'Command:',cmd_line
 else:
 output = None
 try:
 p1 = subprocess.Popen([cat_mail_lines], stdout=subprocess.PIPE,

shell=True)
 p2 = subprocess.Popen(cmd_line, stdin=p1.stdout,

stdout=subprocess.PIPE, shell=True)
 output = p2.communicate()[0]
 except Exception, ex:
 sys.stderr.write('Exception while running filter:'+str(ex)+'\n')
 sys.stderr.write('Attempted command

1:'+str([cat_mail_lines])+'\n')
 sys.stderr.write('Attempted command 2:'+str(cmd_line)+'\n')
 return
 output = output.strip('\n')
 if output_type == 'r':
 print output.strip('\n')
 elif output_type == 'm':
 self.print_metrics(tool, raw_line, line, output, False, False)
 elif output_type == 'f':
 self.print_metrics(tool, raw_line, line, output, True, False)
 elif output_type == 'l':
 self.print_metrics(tool, raw_line, line, output, False, True)
 else:
 #This should never happen!
 print 'Invalid output type:',output_type

 def process_one_line(self, line, msg, data):
 '''Clean up and check one line'''
 if data[NORM_NUM][l_salib.VAL]:
 msg = l_salib.normalize_numbers(msg)
 if self.very_verbose:
 print '_ORIG__>', line
 print '_PARSED_>', msg
 text = msg
 tool = data[TOOL][l_salib.VAL]
 #Get word chains if necessary
 text = l_salib.get_chained_words(text, data[CHAIN_LEN][l_salib.VAL],

data[CHAIN_JOIN_CHAR][l_salib.VAL])

 #Now, do the actual training for this line
 self.test_line(line, text, TEST_SPAM_CMD_LINES[tool], tool,

data[OUTPUT_TYPE][l_salib.VAL])

 def test(self, data):
 '''Run the test'''
 filename = data[INPUTFILE][l_salib.VAL]
 tool = data[TOOL][l_salib.VAL]
 #chain_len = data[CHAIN_LEN][l_salib.VAL]
 parsed_lines = 0
 non_parsed_lines = 0
 if self.very_verbose:
 print 'Testing...'
 line_count = 0
 f_in = None
 if filename == DASH:
 f_in = sys.stdin
 else:
 f_in = open(filename)
 try:
 #WebSphere logs can be multi-line, so state is stored in prevline; start

fresh if this is a WAS log.
 if data[LOGTYPE][l_salib.VAL] in WEBSPHERE_ENTRIES:
 prevline = None

www.manaraa.com

134

 for line in f_in:
 if line.startswith('#') or len(line) < 10 or len(line) > 10000:
 continue
 line_count += 1
 p_line = None
 correct_line_len = 5
 if data[LOGTYPE][l_salib.VAL] in WEBSPHERE_ENTRIES:
 correct_line_len = 4
 #need to be able to handle multi-line entries in this

code
 p_line, prevline =

l_salib.parse_line_text(data[LOGTYPE][l_salib.VAL], line, prevline)
 #If the line is not parsed correctly, just skip it.
 if p_line == None:
 if self.verbose:
 print 'Skipping multiline entry...'
 continue
 else:
 correct_line_len = 5
 p_line, prevline =

l_salib.parse_line_text(data[LOGTYPE][l_salib.VAL], line)

 if p_line == None:
 #The line is a continuation line for WAS or was not

correctly parsed for SYSLOG
 #continuation_lines += 1
 continue
 elif len(p_line) < correct_line_len or len(p_line[-1]) < 5:
 print 'Error parsing line:',line
 non_parsed_lines += 1
 continue
 parsed_lines += 1

 if data[LOGTYPE][l_salib.VAL] in WEBSPHERE_ENTRIES:
 msg = p_line[-

1].replace('\r','').replace('\n','').strip()

 self.process_one_line(line, msg, data)
 else:
 msg = p_line[5].replace('\r','').replace('\n','').strip()

 self.process_one_line(line, msg, data)

 if self.very_verbose and line_count % 100:
 print '.',

 #after the file has been looped, process the last WAS log entry
 if data[LOGTYPE][l_salib.VAL] in WEBSPHERE_ENTRIES:
 if p_line is not None:
 msg = p_line[-

1].replace('\r','').replace('\n','').strip()
 self.process_one_line(line, msg, data)

 finally:
 f_in.close()
 if self.very_verbose:
 print ''
 if self.verbose:
 print '...done training for',line_count,'non-comment, non-

blank',data[LOGTYPE][l_salib.VAL],'lines'
 print parsed_lines,'lines parsed correctly;',non_parsed_lines,'lines not

parsed correctly.'

 def start(self):
 '''The main flow starts here'''
 #Specify props needed, types, default values, etc.
 short_params = "i:c:f:l:j:to:nvh"

www.manaraa.com

135

 long_params =
["inputfile=","chainwords=","filtertool=","logtype=","stackchain","chainjoinchar","`outputtype","normalize
numbers","verbose","help"]

 data = {
 INPUTFILE:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-i',l_salib.LNAME:'--

inputfile',l_salib.VAL:None, l_salib.REQUIRED:True, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},
 TOOL:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-f',l_salib.LNAME:'--

filtertool',l_salib.VAL:SA, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},
 CHAIN_LEN:{l_salib.TYPE:int.__name__,l_salib.SNAME:'-c',l_salib.LNAME:'--

chainwords',l_salib.VAL:DEFAULT_CHAIN_LEN, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 CHAIN_JOIN_CHAR:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-
j',l_salib.LNAME:'--chainjoinchar',l_salib.VAL:DEFAULT_CHAIN_JOIN_CHAR, l_salib.REQUIRED:False,
l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 CHAIN_STACK:{l_salib.TYPE:int.__name__,l_salib.SNAME:'-
t',l_salib.LNAME:'--stackchain',l_salib.VAL:DEFAULT_CHAIN_STACK, l_salib.REQUIRED:False,
l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 LOGTYPE:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-l',l_salib.LNAME:'--
logtype',l_salib.VAL:DEFAULT_LOGTYPE, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 NORM_NUM:{l_salib.TYPE:None,l_salib.SNAME:'-n',l_salib.LNAME:'--
normalizenumbers',l_salib.VAL:False, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 OUTPUT_TYPE:{l_salib.TYPE:str.__name__,l_salib.SNAME:'-
o',l_salib.LNAME:'--outputtype',l_salib.VAL:DEFAULT_OUTPUT_TYPE, l_salib.REQUIRED:False,
l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 VERBOSE:{l_salib.TYPE:None,l_salib.SNAME:'-v',l_salib.LNAME:'--
verbose',l_salib.VAL:self.verbose, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None,
l_salib.ERROR:None},

 HELP:{l_salib.TYPE:None,l_salib.SNAME:'-h',l_salib.LNAME:'--
help',l_salib.VAL:False, l_salib.REQUIRED:False, l_salib.SPECIFIED_VAL:None, l_salib.ERROR:None},

 }

 #Get properties
 props = l_salib.get_params(sys.argv[1:], short_params, long_params, data, self,

self.very_verbose)

 if props[HELP][l_salib.VAL]:
 self.usage()
 sys.exit(0)
 #----Validate properties
 #verbose
 if props[VERBOSE][l_salib.VAL]:
 self.verbose = True

 #input file
 if props[INPUTFILE][l_salib.VAL] is None:
 print 'Please specify a spam input file'
 self.usage()
 sys.exit(1)
 else:
 if self.verbose:
 if props[INPUTFILE][l_salib.VAL] == DASH:
 print 'Testing input from STDIN'
 else:
 print 'Testing input file:',props[INPUTFILE][l_salib.VAL]

 #spam filter tool
 if props[TOOL][l_salib.VAL] is None:
 print 'Defaulting to filter tool: SpamAssassin'
 props[TOOL][l_salib.VAL] = SA
 else:
 props[TOOL][l_salib.VAL] = props[TOOL][l_salib.VAL].lower()
 if props[TOOL][l_salib.VAL] in (SA, SB, BOGO):
 if self.verbose:
 print 'Spam filter tool:',props[TOOL][l_salib.VAL]
 else:
 print 'Invalid spam filter tool

specified:',props[TOOL][l_salib.VAL]

www.manaraa.com

136

 print 'Must be spamassassin, spambayes or bogofilter.'
 print 'Default is spamassassin.'
 self.usage()
 sys.exit(4)

 #validate logtype
 if props[LOGTYPE][l_salib.VAL] is None:
 props[LOGTYPE][l_salib.VAL]=SYSLOG
 else:
 props[LOGTYPE][l_salib.VAL] = props[LOGTYPE][l_salib.VAL].lower()
 valid_vals = (SYSLOG,WEBSPHERE, l_salib.SYSLOG_B, l_salib.SYSLOG_C,

l_salib.SYSLOG_I, l_salib.SYSLOG_N, l_salib.WEBSPHERE_C, l_salib.APPLOG_FHD)
 if props[LOGTYPE][l_salib.VAL] not in valid_vals:
 print 'Invalid logtype specified:',props[LOGTYPE][l_salib.VAL]
 print 'Must be '+' '.join(valid_vals)+'. (Default is

'+DEFAULT_LOGTYPE+')'
 self.usage()
 sys.exit(1)
 else:
 if props[LOGTYPE][l_salib.VAL] == SYSLOG:
 props[LOGTYPE][l_salib.VAL] = l_salib.SYSLOG_I
 elif props[LOGTYPE][l_salib.VAL] == WEBSPHERE:
 props[LOGTYPE][l_salib.VAL] = l_salib.WEBSPHERE_C
 if self.very_verbose:
 print 'Log file type:',props[LOGTYPE][l_salib.VAL]

 #chain length
 chainlen = props[CHAIN_LEN][l_salib.VAL]
 if chainlen < 1:
 if self.very_verbose:
 print 'Chain length < 1; defaulting to 1'
 props[CHAIN_LEN][_VAL]=1
 elif chainlen > CHAIN_LEN_MAX:
 if self.very_verbose:
 print 'Chain length > CHAIN_LENGTH_MAX. Defaulting

to',CHAIN_LEN_MAX
 props[CHAIN_LEN][l_salib.VAL]=CHAIN_LEN_MAX

 if props[CHAIN_LEN][l_salib.VAL] != DEFAULT_CHAIN_LEN:
 if self.very_verbose:
 print 'Chaining',props[CHAIN_LEN][l_salib.VAL],'words together

for structure matching.'

 #output_type
 output_type = props[OUTPUT_TYPE][l_salib.VAL]
 if output_type is None or len(output_type) < 1:
 output_type = DEFAULT_OUTPUT_TYPE
 elif len(output_type) > 1:
 output_type = output_type[0]
 if output_type not in VALID_OUTPUT_TYPES:
 output_type = DEFAULT_OUTPUT_TYPE
 print 'Invalid output type specified

('+str(props[OUTPUT_TYPE][l_salib.VAL])+'); defaulting to',DEFAULT_OUTPUT_TYPE
 #now put the normalized version back into the props structure
 props[OUTPUT_TYPE][l_salib.VAL] = output_type

 #normalize numbers
 if props[NORM_NUM][l_salib.VAL]:
 if self.very_verbose:
 print 'Normalizing numbers to 0'

 self.test(props)

if __name__ == '__main__':
 lte = l_test()
 try:
 lte.start()
 except KeyboardInterrupt, ex:
 print '\nInterrupted by user.'

www.manaraa.com

137

 #raise ex

l_salib.py

#!/usr/bin/python

salib.py - Syslog Analysis library - contains library functions used for other syslog analysis

tools

Version info:
1.0 - 06/10 (rwh) - Initial version
1.1 - 07/17/10 (rwh) - Added the ability to start from a particular line. This will

allow for incremental handling of large files.

import getopt
import sys
import re

_SPLIT_TEXT = ']: '
_TEMPLATE_SRC_TEXT = '__DATA_HERE__'
_NUMBERS = [str(n) for n in range(1,10)]
STRIP_QUOTES = True
TYPE='type'
SNAME='short_name'
LNAME='long_name'
VAL='value'
REQUIRED='required'
SPECIFIED_VAL='specified_value'
ERROR='error'
SYSLOG_I = 'syslog_i'
_SYSLOG_I_TEMPLATE = re.compile('''^(\w+\s+\d+\s+\d+:\d+:\d+)\s+(\w+)\s+(\S+):?\s+(.*)''')#1-

date;#2-server;#3-process;#4-message
SYSLOG_N='syslog_n'
_SYSLOG_N_TEMPLATE =

re.compile('''(\w+\s+\d+\s\d+:\d+:\d+)\s\<(\w+)\.(\w+)\>\s(\S+)\s(\S+):\s(.*)''')#1-date;#2-facility;#3-
severity;#4-server;#5-process;#6-message

SYSLOG_B = 'syslog_b'
_SYSLOG_B_TEMPLATE = re.compile('''(\w+\s+\d+\s\d+:\d+:\d+)\s(\S+)\s(.+?):\s(.*)''')#1-date;#2-

server;#3-process;#4-message
SYSLOG_C = 'syslog_c'
_SYSLOG_C_TEMPLATE = ''#'((\w+)\s\d+\s\d+:\d+:\d+)\s\<(\w+)\.(\w+)\>\s(\S+)\s(.*+):\s(.*)'
WEBSPHERE_C = 'websphere_c'
_WEBSPHERE_C_TEMPLATE =

re.compile('''\[(\d+\/\d+\/\d+\s\d+:\d+:\d+:\d+\s\w+)\]\s(\w+)\s(\w+)\s+(\w)\s+(.*)''')
APPLOG_FHD = 'applog_fhd'
_APPLOG_FHD_TEMPLATE = re.compile('''\d+\.\d+\s+(\d+\-\d+\-

\d+\s+\d+:\d+:\d+),\d+\s+\w+\s+\[(.+?)\]\s+\[\d+\]\s+\[(.+?)\](.*)''')#1-date; #2-process; #3-server; #4-
message

#e.g.: 411386.125 2010-11-12 18:01:25,953 WARN [PersonReader] [4468] [brk001.search.prod.ft-
b,b8] Relatives not found for results page. expected=1, missing=1, samples=[-2147514850], primary=-
2147514848, specGroup=api_matchSummary, relationship=mother

_SPLIT_STRING = re.compile('\s+')

def get_params(args, short_params, long_params, data, source, verbose=False):
 '''Parse out the command-line parameters'''
 try:
 opts, args = getopt.getopt(args, short_params, long_params)
 except getopt.GetoptError, err:
 # print help information and exit:
 print str(err) # will print something like "option -a not recognized"
 source.usage()
 sys.exit(1)
 params=[]

 if verbose:

www.manaraa.com

138

 print 'Running with these options:',' '.join(args)

 for opt, arg in opts:
 for key in data:
 option = data[key]
 if opt in (option[SNAME],option[LNAME]):
 option[SPECIFIED_VAL]=arg

 if option[TYPE] == None:
 option[VAL] = True
 elif option[TYPE] == int.__name__:
 try:
 option[VAL]=int(arg)
 except Exception, ex:
 option[ERROR] = ex
 elif option[TYPE] == float.__name__:
 try:
 option[VAL]=float(arg)
 except Exception, ex:
 option[ERROR] = ex
 elif option[TYPE] == str.__name__:
 option[VAL] = arg
 else:
 sys.stderr.write('Unknown option type:

'+str(option[TYPE])+'\n')
 return data

def get_template(template_file):
 '''Get the contents of a template file as a template string'''
 template = ''
 f_in = open(template_file)
 try:
 template = f_in.readlines()
 finally:
 try:
 f_in.close()
 except:
 sys.stderr.write('Error while closing'+str(template_file)+'\n')
 return ''.join(template)

def fill_template(template, line):
 '''Fill a template using a given line. The template is usually some mail format for the

spam filters.'''
 sline = line
 if _SPLIT_TEXT in line:
 sline = line.split(_SPLIT_TEXT)[1]

 filled_template = template.replace(_TEMPLATE_SRC_TEXT, sline)
 return filled_template

def get_input_lines(filename, maxlines, startline=0):
 '''Get the content of a file, up to a maximum number of lines.'''
 f_in = open(filename)
 line_count = 0
 lines = []
 try:
 for line in f_in:
 #skip lines up to specified starting line
 if startline > line_count:
 continue
 line_count += 1
 if line_count > maxlines:
 sys.stderr.write('Input file > '+str(maxlines)+' lines. Halting

input now.\n')
 break
 if line.startswith('#') or len(line) == 0:

www.manaraa.com

139

 continue
 lines.append(line)

 finally:
 try:
 f_in.close()
 except:
 sys.stderr.write('Error while closing input file.\n')
 return lines

def get_chained_words(line, maxnum, word_join_char='_', stack_chain=False):
 '''Create a chained-words list from a given phrase and chain length, stacking chains if

specified.'''
 line_orig = line
 if maxnum <= 1:
 return line_orig
 #This one collapses multiple spaces and/or tabs
 sline = re.split(_SPLIT_STRING, line)
 #or
 #This one puts one space per position, thus retaining the actual number or spaces. It

does not handle tabs.
 #sline = re.split(' ')
 all_words = []
 for length in range(maxnum,maxnum+1):
 cur_set = []
 for startpos in range(0,len(sline)):
 if startpos+length > len(sline):
 continue
 cur_word = []
 for pos in range(0,length):
 cur_word.append(sline[startpos+pos])

 cur_set.append(word_join_char.join(cur_word))
 all_words.extend(cur_set)
 if stack_chain and maxnum > 1:
 next_set = get_chained_words(line, maxnum-1, word_join_char, stack_chain)
 all_words.append(next_set)
 #print all_words
 return ' '.join(all_words)

def parse_syslogs(line, verbose, template):
 '''Parse a given syslog line'''
 parsed_line = None
 try:
 m = re.search(template, line)
 if m is None:
 if verbose:
 print '******RE match not found for line'
 print '**TEMPLATE**',template
 print '-=LINE-=',line
 else:
 parsed_line = m.groups()
 except:
 if verbose:
 print 'Exception while parsing line:',line
 raise
 return parsed_line

#************ Start Display Current Environment ************
#WebSphere Platform 7.0.0.3 [ND 7.0.0.3 cf030911.09] running with process name

srvl8055Cell01\srvu8035Node01\DSP_8035 and process id 385114
#Host Operating System is AIX, version 5.3
#Java version = 1.6.0, Java Compiler = j9jit24, Java VM name = IBM J9 VM
#was.install.root = /opt/wsph/AppServer
#user.install.root = /opt/wsph/AppServer/profiles/Appserver01
#Java Home = /opt/wsph/AppServer/java/jre

www.manaraa.com

140

#ws.ext.dirs =
/opt/wsph/AppServer/java/lib:/opt/wsph/AppServer/profiles/Appserver01/classes:/opt/wsph/AppServer/classes:
/opt/wsph/AppServer/lib:/opt/wsph/AppServer/installedChannels:/opt/wsph/AppServer/lib/ext:/opt/wsph/AppSer
ver/web/help:/opt/wsph/AppServer/deploytool/itp/plugins/com.ibm.etools.ejbdeploy/runtime

#Classpath =
/opt/wsph/AppServer/profiles/Appserver01/properties:/opt/wsph/AppServer/properties:/opt/wsph/AppServer/lib
/startup.jar:/opt/wsph/AppServer/lib/bootstrap.jar:/opt/wsph/AppServer/lib/jsf-
nls.jar:/opt/wsph/AppServer/lib/lmproxy.jar:/opt/wsph/AppServer/lib/urlprotocols.jar:/opt/wsph/AppServer/d
eploytool/itp/batchboot.jar:/opt/wsph/AppServer/deploytool/itp/batch2.jar:/opt/wsph/AppServer/java/lib/too
ls.jar

#Java Library path =
/opt/wsph/AppServer/java/jre/lib/ppc:/usr/lib:/opt/wsph/AppServer/java/jre/lib/ppc:/opt/wsph/AppServer/jav
a/jre/lib/ppc/j9vm:/opt/wsph/AppServer/java/jre/lib/ppc/j9vm:/opt/wsph/AppServer/java/jre/lib/ppc:/opt/wsp
h/AppServer/java/jre/../lib/ppc:/usr/lib:/opt/wsph/AppServer/java/jre/lib/ppc:/opt/wsph/AppServer/java/jre
/lib/ppc/j9vm:/opt/wsph/AppServer/java/jre/lib/ppc/j9vm:/opt/wsph/AppServer/java/jre/lib/ppc:/opt/wsph/App
Server/java/jre/../lib/ppc:/opt/wsph/AppServer/bin:/opt/oracle/v10201cli/lib32:/usr/lib

#************* End Display Current Environment *************
#[6/10/10 15:39:35:250 MDT] 0000000c webcontainer I com.ibm.ws.wswebcontainer.VirtualHost

addWebApplication SRVE0250I: Web Module WebSphere ASYNC Response Servlet Application has been bound to
default_host[*:9080,*:80,*:9443,*:5060,*:5061,*:443,*:9081,*:9082,*:9083,srvu8201.ldsglobal.net:9081,srvu8
201.ldsglobal.net:80,srvu8201.ldsglobal.net:9444,srvu8201.ldsglobal.net:5063,srvu8201.ldsglobal.net:5062,s
rvu8201.ldsglobal.net:443,srvu8201.ldsglobal.net:9080,srvu8201.ldsglobal.net:9443,srvu8201.ldsglobal.net:5
060,srvu8201.ldsglobal.net:5061,srvu8036.lab.ldsglobal.net:9080,srvu8036.lab.ldsglobal.net:80,srvu8036.lab
.ldsglobal.net:9443,srvu8036.lab.ldsglobal.net:5060,srvu8036.lab.ldsglobal.net:5061,srvu8036.lab.ldsglobal
.net:443,srvu8035.lab.ldsglobal.net:9080,srvu8035.lab.ldsglobal.net:80,srvu8035.lab.ldsglobal.net:9443,srv
u8035.lab.ldsglobal.net:5060,srvu8035.lab.ldsglobal.net:5061,srvu8035.lab.ldsglobal.net:443,srvl8481.ch.or
g:80,srvl8481.ch.org:9443,srvl8481.ch.org:5060,srvl8481.ch.org:5061,srvl8481.ch.org:443,srvu7999.ch.org:90
80,srvu7999.ch.org:80,srvu7999.ch.org:9443,srvu7999.ch.org:5060,srvu7999.ch.org:5061,srvu7999.ch.org:443,s
rvu8816.ldsglobal.net:9080,srvu8816.ldsglobal.net:80,srvu8816.ldsglobal.net:9443,srvu8816.ldsglobal.net:50
60,srvu8816.ldsglobal.net:5061,srvu8816.ldsglobal.net:443,srvu8816.ldsglobal.net:9081,srvu8816.ldsglobal.n
et:9444,srvu8816.ldsglobal.net:5063,srvu8816.ldsglobal.net:5062,srvu8505.ldsglobal.net:9080,srvu8505.ldsgl
obal.net:80,srvu8505.ldsglobal.net:9443,srvu8505.ldsglobal.net:5060,srvu8505.ldsglobal.net:5061,srvu8505.l
dsglobal.net:443,*:9091,*:9086,srvu7965.ch.org:9080,srvu7965.ch.org:80,srvu7965.ch.org:9443,srvu7965.ch.or
g:5060,srvu7965.ch.org:5061,srvu7965.ch.org:443,srvl7042.ch.org:9080,srvl7042.ch.org:80,srvl7042.ch.org:94
43,srvl7042.ch.org:5060,srvl7042.ch.org:5061,srvl7042.ch.org:443,srvl7041.ch.org:9080,srvl7041.ch.org:80,s
rvl7041.ch.org:9443,srvl7041.ch.org:5060,srvl7041.ch.org:5061,srvl7041.ch.org:443,*:9084,*:9085,srvu7530.c
h.org:9060,srvu7530.ch.org:80,srvu7530.ch.org:9062,srvu7530.ch.org:9076,srvu7530.ch.org:9077,srvu7530.ch.o
rg:443,srvu7529.ch.org:9080,srvu7529.ch.org:80,srvu7529.ch.org:9443,srvu7529.ch.org:5060,srvu7529.ch.org:5
061,srvu7529.ch.org:443,*:9088,srvl7023.ch.org:9080,srvl7023.ch.org:80,srvl7023.ch.org:9443,srvl7023.ch.or
g:5060,srvl7023.ch.org:5061,srvl7023.ch.org:443,srvu8132.lab.ldsglobal.net:9080,srvu8132.lab.ldsglobal.net
:80,srvu8132.lab.ldsglobal.net:9443,srvu8132.lab.ldsglobal.net:5060,srvu8132.lab.ldsglobal.net:5061,srvu81
32.lab.ldsglobal.net:443,srvu8173.lab.ldsglobal.net:9080,srvu8173.lab.ldsglobal.net:80,srvu8173.lab.ldsglo
bal.net:9443,srvu8173.lab.ldsglobal.net:5060,srvu8173.lab.ldsglobal.net:5061,srvu8173.lab.ldsglobal.net:44
3,*:9089,srvu8461.ch.org:9080,srvu8461.ch.org:80,srvu8461.ch.org:9443,srvu8461.ch.org:5060,srvu8461.ch.org
:5061,srvu8461.ch.org:443,srvu8462.ch.org:9080,srvu8462.ch.org:80,srvu8462.ch.org:9443,srvu8462.ch.org:506
0,srvu8462.ch.org:5061,srvu8462.ch.org:443,srvu8744.ch.org:9080,srvu8744.ch.org:80,srvu8744.ch.org:9443,sr
vu8744.ch.org:5060,srvu8744.ch.org:5061,srvu8744.ch.org:443,srvl7415.ch.org:9080,srvl7415.ch.org:80,srvl74
15.ch.org:9443,srvl7415.ch.org:5060,srvl7415.ch.org:5061,srvl7415.ch.org:443,srvl7416.ch.org:9080,srvl7416
.ch.org:80,srvl7416.ch.org:9443,srvl7416.ch.org:5060,srvl7416.ch.org:5061,srvl7416.ch.org:443,srvu7530.ch.
org:19060,srvu7530.ch.org:19062,srvu7530.ch.org:19076,srvu7530.ch.org:19077].

def parse_waslog_line(line, verbose, template, prevline):
 '''Parse WebSphere App Server log line'''
 if line.startswith('***') and 'Start Display Current Environment' in line:
 if verbose:
 print 'WAS restart record found'
 return None, None
 elif not line.startswith('['):
 if prevline is not None:
 if type(prevline[3]) != type('str'):
 print prevline[3]
 prevline[3] += ' '+line
 return None, prevline
 parsed_line = None
 line=line.replace('\r','').replace('\n','')
 try:
 #For now, throw away all lines from multiline entries, except for the one with

the date.
 m = re.search(template, line)

www.manaraa.com

141

 if m is None:
 if verbose:
 print 'RE match not found for line'
 parsed_line = (None, None, None, None, None, line.strip())
 else:
 parsed_line = m.groups()
 prevline = parsed_line
 except:
 if verbose:
 print 'Exception while parsing waslog line:',line
 raise
 return parsed_line, prevline

def parse_syslog_i(line, verbose):
 '''Parse type i syslog line'''
 #sample lines:
 #Aug 4 16:55:48 slinger dhclient: bound to 192.168.10.150 -- renewal in 3161 seconds.
 #Aug 5 14:05:48 josephus dhclient: DHCPACK from 192.168.10.4
 #Aug 8 22:09:19 goteam ntpd[4503]: kernel time sync status change 4001
 #Aug 9 11:49:04 samwise kernel: [0.000000] modified: 000000007feff000 -

000000007ff00000 (ACPI NVS)
 #(1=date)(2=facility=NONE)(3=severity=NONE)(4=server)(5=process)(6=message)
 parsed_line = None
 temp_parsed_line = parse_syslogs(line, verbose, _SYSLOG_I_TEMPLATE)
 if len(temp_parsed_line) == 4:
 #Pad the return value up to 6 entries, matching syslog_n output length
 parsed_line = (temp_parsed_line[0], None, None, temp_parsed_line[1],

temp_parsed_line[2], temp_parsed_line[3])
 else:
 print 'Incorrect number of elements parsed for syslog_n entry. Results may be

invalid.'
 parsed_line = temp_parsed_line
 return parsed_line

def parse_syslog_n(line, verbose):
 '''Parse type n syslog line'''
 #sample lines:
 #Sep 22 11:10:01 <user.notice> myserv1-n logrotate: ALERT exited abnormally with [1]
 #Nov 11 20:22:09 <daemon.info> myserv2-n named[3031]: unexpected RCODE (SERVFAIL)

resolving 'inkcommercial.com/MX/IN': 62.254.254.124#53
 #Jan 4 8:01:04 <daemon.debug> myserv3-b SSLVPN: Sending servlet CONNMAN_STATUS response to

fd 16
 #(1=date)(2=facility)(3=severity)(4=server)(5=process)(6=message)
 parsed_line = None
 temp_parsed_line = parse_syslogs(line, verbose, _SYSLOG_N_TEMPLATE)
 if len(temp_parsed_line) == 6:
 parsed_line = temp_parsed_line
 else:
 print 'Incorrect number of elements parsed for syslog_n entry. Results may be

invalid.'
 return parsed_line

def parse_syslog_b(line, verbose):
 '''Parse type b syslog line'''
 #Jun 13 04:02:03 aji syslogd 1.4.1: restart.
 #Jun 13 04:02:03 aji rpc.idmapd[3022]: nss_getpwnam: name 'infauser' not found in domain

'localdomain'
 #Jun 13 04:03:28 aji selogrd[16915]: Cannot resolve destination file. Entry ignored.
 #(1=date)(2=facility=NONE)(3=severity=NONE)(4=server)(5=process)(6=message)
 parsed_line = None
 temp_parsed_line = parse_syslogs(line, verbose, _SYSLOG_B_TEMPLATE)
 if temp_parsed_line is not None and len(temp_parsed_line) == 4:
 #Pad the return value up to 6 entries, matching syslog_n output length
 parsed_line = (temp_parsed_line[0], None, None, temp_parsed_line[1],

temp_parsed_line[2], temp_parsed_line[3])
 else:
 parsed_line = temp_parsed_line
 return parsed_line

www.manaraa.com

142

def parse_syslog_c(line, verbose):
 '''Parse type c syslog line'''
 print 'parse_syslog_c is not yet implemented'
 sys.exit(5)
 return line

def parse_applog_fhd(line, verbose):
 '''Parse FHD app log line'''
 #sample lines:
 #411327.594 2010-11-12 18:00:27,440 WARN [BrokerImpl] [1371] [brk001.search.prod.ft-

b,b8] match() - Unable to communicate with updaters. Results only reflect baked state.
 #411328.969 2010-11-12 18:00:28,813 ERROR [BrokerImpl] [23201] [brk001.search.prod.ft-

b,b8] Error matching on updaters. Attempt 1 of 3. Will retry.
 #411386.125 2010-11-12 18:01:25,952 WARN [PersonReader] [4468] [brk001.search.prod.ft-

b,b8] Relatives not found for results page. expected=1, missing=1, samples=[-2147514849], primary=-
2147514848, specGroup=api_matchSummary, relationship=father

 #(1=date)(2=facility=NONE)(3=severity=NONE)(4=process)(5=server)(6=message)
 parsed_line = None
 temp_parsed_line = parse_syslogs(line, verbose, _APPLOG_FHD_TEMPLATE)
 if temp_parsed_line == None:
 sys.stderr.write('Unable to parse line properly: '+str(line)+'\n')
 elif len(temp_parsed_line) == 4:
 #Pad the return value up to 6 entries, matching syslog_n output length
 parsed_line = (temp_parsed_line[0], None, None, temp_parsed_line[2],

temp_parsed_line[1], temp_parsed_line[3].strip('\r'))
 else:
 print 'Incorrect number of elements parsed for applog_fhd entry. Results may be

invalid.'
 parsed_line = temp_parsed_line
 return parsed_line

def parse_websphere_c(line, verbose, prevline):
 '''Parse WebSphere log line'''
 #sample log data
 #************ Start Display Current Environment ************
 #WebSphere Platform 6.1 [ND 6.1.0.23 cf230910.10] running with process name

cell\srvu4160_AppSvr01\ERS_4160 and process id 466954
 #Detailed IFix information: No IFixes applied to this build
 #Host Operating System is AIX, version 5.3
 #Java version = 1.5.0, Java Compiler = j9jit23, Java VM name = IBM J9 VM
 #was.install.root = /opt/wsph/AppServer
 #user.install.root = /opt/wsph/AppServer/profiles/AppServer01
 #Java Home = /opt/wsph/AppServer/java/jre
 #ws.ext.dirs =

/opt/wsph/AppServer/java/lib:/opt/wsph/AppServer/profiles/AppServer01/classes:/opt/wsph/AppServer/classes:
/opt/wsph/AppServer/lib:/opt/wsph/AppServer/installedChannels:/opt/wsph/AppServer/lib/ext:/opt/wsph/AppSer
ver/web/help:/opt/wsph/AppServer/deploytool/itp/plugins/com.ibm.etools.ejbdeploy/runtime

 #Classpath =
/opt/wsph/AppServer/profiles/AppServer01/properties:/opt/wsph/AppServer/properties:/opt/wsph/AppServer/lib
/startup.jar:/opt/wsph/AppServer/lib/bootstrap.jar:/opt/wsph/AppServer/lib/j2ee.jar:/opt/wsph/AppServer/li
b/lmproxy.jar:/opt/wsph/AppServer/lib/urlprotocols.jar:/opt/wsph/AppServer/deploytool/itp/batchboot.jar:/o
pt/wsph/AppServer/deploytool/itp/batch2.jar:/opt/wsph/AppServer/java/lib/tools.jar

 #Java Library path =
/opt/wsph/AppServer/java/jre/bin:/opt/wsph/AppServer/java/jre/bin:/opt/wsph/AppServer/java/jre/bin/classic
:/opt/wsph/AppServer/java/jre/bin:/opt/wsph/AppServer/bin:/opt/oracle/v10201cli/lib32:/opt/wsph/AppServer/
java/jre/bin/j9vm:/opt/wsph/AppServer/java/jre/bin/j9vm:/opt/wsph/AppServer/java/jre/bin/j9vm:/usr/lib:/op
t/wsph/AppServer/lib/WMQ/java/lib

 #************* End Display Current Environment *************
 #[7/6/10 23:01:21:921 MDT] 00003ac8 UserGrant W USER_GRANT Insert <<<Insert - Id:

null - OrgId: null - Role: ROLE_USER - User: 157616 - UserProfessionalCenterRights: >>>
 #[7/6/10 23:01:21:952 MDT] 00003ac8 SecurityBean W Error with user contact info setup.

Redirecting to LookingTo page for user=157616
 #[7/6/10 23:01:33:640 MDT] 00003ac8 WebContainer E SRVE0255E: A WebGroup/Virtual Host

to handle /_WS/PT has not been defined.
 #[7/6/10 23:02:53:688 MDT] 00003593 SecurityBean W Error with user contact info setup.

Redirecting to LookingTo page for user=157616
 #[7/6/10 23:03:05:473 MDT] 00003593 JobSearchBean I ----->Start job search

www.manaraa.com

143

 #[7/6/10 23:03:05:489 MDT] 00003593 JobSearchBean I ------>End proximity. Elapse Time
in seconds:3.0E-6

 #[7/6/10 23:03:05:492 MDT] 00003593 JobSearchBean I Job Search criteria: location =
Sugar Hill GA 30518

 #latitude = 34.121634
 #longitude = -84.048862
 #radius = distance-amount.twentyfive
 #unit = MILE
 #
 #[7/6/10 23:03:10:631 MDT] 00003593 JobSearchBean I ------>End Query. Elapse Time in

seconds:5.133251
 #[7/6/10 23:03:44:364 MDT] 0000375b JobSearchBean I Job Search criteria: location =

Sugar Hill GA 30518
 #latitude = 34.121634
 #longitude = -84.048862
 #radius = distance-amount.ten
 #unit = MILE
 #
 #[7/6/10 23:03:47:504 MDT] 0000375b JobSearchBean I ------>End Query. Elapse Time in

seconds:3.137292
 #[7/6/10 23:03:47:508 MDT] 0000375b JobSearchBean I ------>End Search. Elapse Time in

seconds:3.146098
 #[7/6/10 23:04:22:284 MDT] 0000375b GisServiceImp I Initializing GIS Service Proxy
 #[7/6/10 23:05:02:395 MDT] 000039d7 JobSearchBean I ------>End proximity. Elapse Time

in seconds:2.0E-6
 #[7/6/10 23:05:02:397 MDT] 000039d7 JobSearchBean I Job Search criteria: location =

Sugar Hill GA 30518
 #latitude = 34.121634
 #longitude = -84.048862
 #radius = distance-amount.ten
 #unit = MILE
 #
 #[7/6/10 23:05:05:463 MDT] 000039d7 JobSearchBean I ------>End Query. Elapse Time in

seconds:3.062806
 #[7/6/10 23:05:27:791 MDT] 00003ac8 JobSearchBean I Job Search criteria: location =

Sugar Hill GA 30518
 #latitude = 34.121634
 #longitude = -84.048862
 #radius = distance-amount.ten
 #unit = MILE
 #
 #[7/6/10 23:07:15:294 MDT] 000039d7 WebContainer E SRVE0255E: A WebGroup/Virtual Host

to handle /_WS/PT has not been defined.
 #[7/6/10 23:07:25:505 MDT] 00003ac8 SRTServletReq E SRVE0133E: An error occurred while

parsing parameters. java.net.SocketTimeoutException: Async operation timed out
 # at

com.ibm.ws.tcp.channel.impl.AioTCPReadRequestContextImpl.processSyncReadRequest(AioTCPReadRequestContextIm
pl.java:157)

 # at
com.ibm.ws.tcp.channel.impl.TCPReadRequestContextImpl.read(TCPReadRequestContextImpl.java:109)

 # at
com.ibm.ws.http.channel.impl.HttpServiceContextImpl.fillABuffer(HttpServiceContextImpl.java:4127)

 # at
com.ibm.ws.http.channel.impl.HttpServiceContextImpl.readSingleBlock(HttpServiceContextImpl.java:3371)

 #(1=date)(2=facility=NONE)(3=severity)(4=server=NONE?)(5=process)(6=message)

 #Parsing options:
 #1. Only look at rows with time stamps
 #2. Append lines without timestamps to the end of most recent line with timestamp
 #3. duplicate most recent timestamp for each line without a timestamp
 #4. Does this matter? I'm throwing away the timestamp anyway.
 #4a. It only matters for separating out the log data (timestamp, hex#, class name, log

level letter [I/W/E] from the text of the log entry
 #parsed_line = (None,None,None,None,line)
 parsed_line = None
 temp_parsed_line, prevline = parse_waslog_line(line, verbose, _WEBSPHERE_C_TEMPLATE,

prevline)
 if temp_parsed_line is None:

www.manaraa.com

144

 if verbose:
 print 'Line skipped or part of previous entry'
 elif len(temp_parsed_line) == 5:
 #Pad the return value up to 6 entries, matching syslog_n output length
 parsed_line = (temp_parsed_line[0], None, temp_parsed_line[3], None,

temp_parsed_line[2], temp_parsed_line[3], temp_parsed_line[4])
 else:
 sys.stderr.write('Incorrect number of elements parsed for waslog_c

entry('+str(len(temp_parsed_line))+', should be 5). Results may be invalid.\n')
 #parsed_line = (None,None,None,None,None,temp_parsed_line)
 parsed_line = temp_parsed_line
 return parsed_line, prevline

def parse_line_text(logtype, line, prevline=None, verbose=False):
 '''Clean up line and call correct method to parse for the given type of log line'''
 p_line = None
 if STRIP_QUOTES:
 line = line.replace('\"','')
 if logtype == APPLOG_FHD:
 p_line = parse_applog_fhd(line, verbose)
 elif logtype == SYSLOG_I:
 p_line = parse_syslog_i(line, verbose)
 elif logtype == SYSLOG_N:
 p_line = parse_syslog_n(line, verbose)
 elif logtype == SYSLOG_B:
 p_line = parse_syslog_b(line, verbose)
 elif logtype == SYSLOG_C:
 p_line = parse_syslog_c(line, verbose)
 elif logtype == WEBSPHERE_C:
 p_line, prevline = parse_websphere_c(line, verbose, prevline)
 else:
 print 'Unknown log file type:',logtype
 return p_line, prevline

def normalize_numbers(text):
 '''Convert all digits to 0'''
 for n in _NUMBERS:
 text = text.replace(n,'0')
 return text

l_check_common.py

#!/usr/bin/python
#f
l_check_common.py - Common variables and methods for log file spam-filter training and testing

systems

Version info:
1.0 - 07/31/10 (rwh) - Initial version
1.1 - 08/20/10 (rwh) - Added vars for rawoutput and printmessage
1.2 - 12/04/10 (rwh) - Added var for printline

import sys
import os
import l_salib

program_name=sys.argv[0].split(os.sep)[-1]

DASH = '-'
HAMFILE = 'hamfile'
SPAMFILE = 'spamfile'
INPUTFILE = 'inputfile'

www.manaraa.com

145

NORM_NUM = 'normalize_numbers'
CHAIN_LEN = 'chain_length'
CHAIN_JOIN_CHAR='chain_join_char'
CHAIN_STACK = 'chain_stack'
TOOL = 'tool'
DEFAULT_CHAIN_LEN = 1
DEFAULT_CHAIN_JOIN_CHAR = '_'
DEFAULT_CHAIN_STACK = False
CHAIN_LEN_MAX = 10
NOCLEAR = 'noclear'
OUTPUT_TYPE = 'outputtype'
PRINTMESSAGE = 'printmessage'
PRINTLINE = 'printline'
VERBOSE = 'verbose'
HELP = 'help'
SA = "spamassassin"
SB = "spambayes"
BOGO = "bogofilter"
LOGTYPE = 'logtype'
SYSLOG = 'syslog'
APPLOG_FHD = 'applog_fhd'
WEBSPHERE = 'websphere'
WEBSPHERE_C = 'websphere_c'
WEBSPHERE_ENTRIES = (WEBSPHERE, WEBSPHERE_C)
#DEFAULT_LOGTYPE = SYSLOG
DEFAULT_LOGTYPE = APPLOG_FHD
VALID_OUTPUT_TYPES = ('r','m','l','f')
DEFAULT_OUTPUT_TYPE = VALID_OUTPUT_TYPES[1]

CMD_CLEAR_FILTER = {SA:'sa-learn --clear', SB:'sb_filter.py -n', BOGO:'if [-f

~/.bogofilter/wordlist.db]; then rm ~/.bogofilter/wordlist.db; fi'}
HAM_SPAM_CMD_LINES = {HAMFILE:{SA:'sa-learn --ham',SB:'sb_filter.py -g',BOGO:'bogofilter -

n'},SPAMFILE:{SA:'sa-learn --spam',SB:'sb_filter.py -s',BOGO:'bogofilter -s'}}
TEST_SPAM_CMD_LINES = {SA:'spamc -c',SB:'sb_filter.py',BOGO:'bogofilter --verbosity'}

VAL=l_salib.VAL
TYPE=l_salib.TYPE
SNAME=l_salib.SNAME
LNAME=l_salib.LNAME
REQUIRED=l_salib.REQUIRED
SPECIFIED_VAL=l_salib.SPECIFIED_VAL
ERROR=l_salib.ERROR

MESSAGE_HERE = '__MESSAGE__HERE__'

MAIL_TEMPLATE = '''cat <<END_TEXT
Return-Path: skip@pobox.com
Delivery-Date: Sat May 1 20:47:01 2010
From: spamtest.rhavens@byu.edu (Russel Havens)
Date: Sat, 1 May 2010 19:47:01 -0600
Subject: Test Message

__MESSAGE__HERE__

END_TEXT
'''

l_runtest.sh

#!/bin/sh
Test Harness: run tests for sa, sb and bogofilter, with various word chainings
Train all 3 filters for a given chain level, then test all 3 filters

#N_SAMPLE_NAMED="/home/rhavens/Dropbox/data/syslog/nov/sample-named.txt"
#N_SAMPLE_NNTP="/home/rhavens/Dropbox/data/syslog/nov/sample-nntp.txt"

www.manaraa.com

146

#Full test document: "~/Dropbox/data/syslog/nov/named-typhoond.log"
I_SAMPLE_KERNEL="/home/rhavens/Dropbox/data/syslog/itet/syslogs-itet-kernel.txt.25.sample"
I_SAMPLE_DHCLIENT="/home/rhavens/Dropbox/data/syslog/itet/syslogs-itet-dhclient.txt.25.sample"
I_KERNEL_DHCLIENT="/home/rhavens/Dropbox/data/syslog/itet/kernel-dhclient.txt"

do_test() {
 if [-f ${OUTPUTFILE}];
 then
 TODAY=`date +'%Y-%m-%d_%H-%M-%S'`
 cp -f ${OUTPUTFILE} ${OUTPUTFILE}.bak.${TODAY}
 fi
 echo "Running test for ${TOOL}, chainlevels=${CHAINLEVEL}"
 ./l_test.py -i ${TEST_SET} ${NORM_NUMBERS} -l ${LOG_TYPE} -c ${CHAINLEVEL} -j

${CHAIN_JOIN_CHAR} -f ${TOOL} -t > ${OUTPUTFILE}
 #This makes it easier for a ctrl-c to break out of the script
 sleep 1
}

train_test() {
 if [-z "${CHAINLEVEL}"];
 then
 CHAINLEVEL=1
 fi
 #sample set:
 ./l_train.py -s ${SAMPLE_SPAM} -a ${SAMPLE_HAM} ${NORM_NUMBERS} -l ${LOG_TYPE} -c

${CHAINLEVEL} -j ${CHAIN_JOIN_CHAR} -f spamassassin ${STACKPARAM}
 ./l_train.py -s ${SAMPLE_SPAM} -a ${SAMPLE_HAM} ${NORM_NUMBERS} -l ${LOG_TYPE} -c

${CHAINLEVEL} -j ${CHAIN_JOIN_CHAR} -f spambayes ${STACKPARAM}
 ./l_train.py -s ${SAMPLE_SPAM} -a ${SAMPLE_HAM} ${NORM_NUMBERS} -l ${LOG_TYPE} -c

${CHAINLEVEL} -j ${CHAIN_JOIN_CHAR} -f bogofilter ${STACKPARAM}

 #Don't just stomp on an existing output filed -- it may have taken a long time to build!
 TOOL="spamassassin"
 STACKPARAM='-t'
 OUTPUTFILE="dhclient_kernel-sa-c${CHAINLEVEL}${NORM_NUMBERS}-j${CHAIN_JOIN_CHAR}-

stack.csv"
 do_test
 STACKPARAM=''
 OUTPUTFILE="dhclient_kernel-sa-c${CHAINLEVEL}${NORM_NUMBERS}-j${CHAIN_JOIN_CHAR}-

nostack.csv"
 do_test
 TOOL="spambayes"
 STACKPARAM='-t'
 OUTPUTFILE="dhclient_kernel-sb-c${CHAINLEVEL}${NORM_NUMBERS}-j${CHAIN_JOIN_CHAR}-

stack.csv"
 do_test
 STACKPARAM=''
 OUTPUTFILE="dhclient_kernel-sb-c${CHAINLEVEL}${NORM_NUMBERS}-j${CHAIN_JOIN_CHAR}-

nostack.csv"
 do_test
 TOOL="bogofilter"
 STACKPARAM='-t'
 OUTPUTFILE="dhclient_kernel-bogo-c${CHAINLEVEL}${NORM_NUMBERS}-j${CHAIN_JOIN_CHAR}-

stack.csv"
 do_test
 STACKPARAM=''
 OUTPUTFILE="dhclient_kernel-bogo-c${CHAINLEVEL}${NORM_NUMBERS}-j${CHAIN_JOIN_CHAR}-

nostack.csv"
 do_test
 echo 'Done with test.'
 date
}

echo 'Starting...'
date
#kernel records reported as SPAM
#dhclient records reported as HAM
NORM_NUMBERS=""
#"-n"

www.manaraa.com

147

#NORM_NUMBERS=""
LOG_TYPE=syslog_i
CHAIN_JOIN_CHAR=_
SAMPLE_SPAM=$I_SAMPLE_KERNEL
SAMPLE_HAM=$I_SAMPLE_DHCLIENT
TEST_SET=$I_KERNEL_DHCLIENT
CHAINLEVEL=1
train_test
CHAINLEVEL=3
train_test
CHAINLEVEL=5
train_test
CHAINLEVEL=7
train_test
CHAINLEVEL=9
train_test

matchrate.py

#!/usr/bin/python

matchrate.py - Report the percentage of correct message type matches for output of

l_test.py

import sys
import os
import os.path as ospath

_DIR_NAME = '/home/rhavens/Dropbox/code/python/source/loganalysis/output/'
_SA = '-sa-'
_SB = '-sb-'
_BOGO = '-bogo-'

def process_file(filename, tool):
 match = 0
 miss = 0
 f_in = open(filename)
 try:
 for line in f_in:
 sline = line.lower().split('\t')
 if len(sline) < 3:
 print 'Invalid line:',line
 print filename
 continue
 if 'detected_type' in line or 'threshold' in line:
 continue
 if tool == _SA:
 if (sline[0] == 'spam' and float(sline[1]) >= 3.0) or (sline[0]

== 'ham' and float(sline[1]) < 3.0):
 match += 1
 else:
 miss += 1
 else:
 if sline[0] == sline[1]:
 match += 1
 else:
 miss += 1
 finally:
 f_in.close()
 return match, miss

def start():
 print 'filename match_rate'
 filelist = os.listdir(_DIR_NAME)
 for filename in filelist:

www.manaraa.com

148

 if filename.startswith('dhclient_kernel') and '-scrubbed' in filename:
 tool = None
 if _BOGO in filename:
 tool = _BOGO
 elif _SB in filename:
 tool = _SB
 elif _SA in filename:
 tool = _SA
 else:
 print 'File type not recognized by name:',filename
 continue

 match,miss =process_file(_DIR_NAME+filename, tool)
 if match+miss < 1:
 print 'Problem parsing records in file:',_DIR_NAME+filename
 print filename+'\t'+str(round((float(match)/float(match+miss)*100.00),3))

if __name__ == '__main__':
 start()
l_final_run_stage.sh
#!/bin/sh
do_training() {
 if [${samplesize} == "small"];
 then
 spamfile="sysout-files-111210-18_46-48_training.log"
 hamfile="sysout-files-111210-18_NO_46-48_training-full.log.33.sample"
 else
 spamfile="sysout-files-111210-18_45-48-all-spam-training.log"
 hamfile="sysout-files-111210-without_18_45-48.log.348.sample"
 fi
 ./l_train.py -s /home/rhavens/Dropbox/data/fhd/applog/${spamfile} -a

/home/rhavens/Dropbox/data/fhd/applog/${hamfile} -c ${chain} ${normalize} -l applog_fhd -f spamassassin
 ./l_train.py -s /home/rhavens/Dropbox/data/fhd/applog/${spamfile} -a

/home/rhavens/Dropbox/data/fhd/applog/${hamfile} -c ${chain} ${normalize} -l applog_fhd -f spambayes
 ./l_train.py -s /home/rhavens/Dropbox/data/fhd/applog/${spamfile} -a

/home/rhavens/Dropbox/data/fhd/applog/${hamfile} -c ${chain} ${normalize} -l applog_fhd -f bogofilter
}

do_tests() {
 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111210.log -c ${chain}

${normalize} -l applog_fhd -f spamassassin -o f > output-final_stage_sysout-files-111210-${samplesize}-sa-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111210.log -c ${chain}
${normalize} -l applog_fhd -f spambayes -o f > output-final_stage_sysout-files-111210-${samplesize}-sb-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111210.log -c ${chain}
${normalize} -l applog_fhd -f bogofilter -o f > output-final_stage_sysout-files-111210-${samplesize}-bogo-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111610.log -c ${chain}

${normalize} -l applog_fhd -f spamassassin -o f > output-final_stage_sysout-files-111610-${samplesize}-sa-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111610.log -c ${chain}
${normalize} -l applog_fhd -f spambayes -o f > output-final_stage_sysout-files-111610-${samplesize}-sb-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111610.log -c ${chain}
${normalize} -l applog_fhd -f bogofilter -o f > output-final_stage_sysout-files-111610-${samplesize}-bogo-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111810.log -c ${chain}

${normalize} -l applog_fhd -f spamassassin -o f > output-final_stage_sysout-files-111810-${samplesize}-sa-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111810.log -c ${chain}
${normalize} -l applog_fhd -f spambayes -o f > output-final_stage_sysout-files-111810-${samplesize}-sb-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-111810.log -c ${chain}
${normalize} -l applog_fhd -f bogofilter -o f > output-final_stage_sysout-files-111810-${samplesize}-bogo-
c${chain}${normalize}.csv

www.manaraa.com

149

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-112110.log -c ${chain}

${normalize} -l applog_fhd -f spamassassin -o f > output-final_stage_sysout-files-112110-${samplesize}-sa-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-112110.log -c ${chain}
${normalize} -l applog_fhd -f spambayes -o f > output-final_stage_sysout-files-112110-${samplesize}-sb-
c${chain}${normalize}.csv

 ./l_test.py -i /home/rhavens/Dropbox/data/fhd/applog/sysout-files-112110.log -c ${chain}
${normalize} -l applog_fhd -f bogofilter -o f > output-final_stage_sysout-files-112110-${samplesize}-bogo-
c${chain}${normalize}.csv

}

for samplesize in "small" "big";
do
 for chain in 1 2 3 4;
 do
 for normalize in "-n" "";
 do
 echo "----Training for ${chain} ${normalize} ${samplesize} - `date`"
 do_training
 echo "****Testing for ${chain} ${normalize} ${samplesize}- `date`"
 do_tests
 done
 done
done

scrubfiles.py

#!/usr/bin/python

import os

files = os.listdir("c:/data/ThesisFeb")
for filename in files:
 if (not filename.endswith('.csv')) or '.scrubbed.' in filename or (not

filename.startswith('output-final')):
 continue
 newfilename = filename.replace('.csv','.scrubbed.csv')
 print 'Processing',filename
 f_in = open(filename)
 print 'newfilename=',newfilename
 try:
 f_out = open(newfilename,'w')
 try:
 for line in f_in:
 if len(line.strip()) < 11:
 continue
 elif 'Unable to parse line properly' in line:
 continue
 else:
 f_out.write(line)
 f_out.flush()
 finally:
 f_out.close()
 finally:
 f_in.close()

so-graphs.R

#!/cygdrive/c/Program Files/R/R-2.12.0/bin/Rscript
so-graphs.R - Generate Spam filter Output GRAPHs from .csv files

Version info

www.manaraa.com

150

1.0 - 02/11 (rwh) - Initial version - used for November FHD applogs.
1.1 - 03/26/11 (rwh) - Bumped up size of axis labels; fixed numerous small issues.
1.2 - 04/04/11 (rwh) - Updated to analyze FHD syslogs from March.
1.3 - 04/09/11 (rwh) - Updated to handle both Nov and Mar files.
1.4 - 05/07/11 (rwh) - Added minset directory handling (to allow redoing just a few

graphs)

require(car);
require(lattice);

utc_offset = 7*60*60;
log_set = 'minset'; #could be fall or spring or minset

#Function to generate and save out a graph of the specified dataset
generate_graph = function(pngname, dataset, outage_times, filename, doJitter)
{
 #Generate graph from spam set only
 print(paste('Generated .png file:',pngname));

 #dataset$dt = strptime(dataset$datetime, '%Y-%m-%d %H:%M:%S');
 #dataset$dtepoch = as.integer(as.POSIXct(spamrows$dt));

 tryCatch({
 png(pngname, width=1200, height=1000, unit='px', pointsize=12, bg='white',

res=NA, restoreConsole=TRUE);
 lefttick=min(dataset$date_epoch);
 righttick=max(dataset$date_epoch);

 par(cex=1.25, cex.lab=2.5, cex.axis=2.5,cex.main=2, mar=c(8,9,4,4), ann=FALSE);
 #scatterplot(dataset$date_epoch, dataset$score, xaxt='n');
 #scatterplot(dataset$date_epoch, dataset$score, xaxp=c(lefttick,righttick,6));
 ##smoothScatter gives a Very different view of the data (more like a heatmap):

smoothScatter(dataset$date_epoch, dataset$score);

 #scatterplot(dataset$date_epoch, dataset$score, jitter=list(x=1, y=1));
 if (doJitter == TRUE) {
 scatterplot(dataset$date_epoch, dataset$score, jitter=list(x=1, y=1),

boxplots="xy");
 #plot(jitter(dataset$date_epoch), jitter(dataset$score));
 } else {
 scatterplot(dataset$date_epoch, dataset$score, boxplots="xy");
 #plot(dataset$date_epoch, dataset$score);
 }

 line_count = 0;
 for (vline in outage_times) {
 line_count = line_count+1;
 if (log_set == 'fall') {
 abline(v=vline[1],col='red');
 } else {
 if ((line_count %% 2) == 0) {
 abline(v=vline,col='blue');
 } else {
 abline(v=vline,col='red');
 }
 }
 }
 #title(main=fname, sub='Epoch Time vs. Filter Score ',ylab='Filter

Score',xlab='Epoch Time');
 title(main=fname,ylab='Filter Score',xlab='Epoch Time');

 }, finally = {
 dev.off();
 })#End of tryCatch
}

get_col_headers = function(fname)
{

www.manaraa.com

151

 skiplines = 0;
 #Set the column headers according to the filter tool type, since they're not in these raw

files
 col_headers = NULL;
 if (regexpr('avg.csv',fname) > 0) {
 col_headers = c('period','score_total','score_count','score_mean');
 skiplines = 1;
 } else {
 if (regexpr('-sa-',fname) > 0) {
 col_headers =

c('score','threshold','date_epoch','datetime','emptycol','message');
 threshold = '-3.0-';
 } else {
 if (regexpr('-sb-',fname) > 0) {
 col_headers =

c('verdict','score','date_epoch','datetime','emptycol','message');
 } else {
 if (regexpr('-bogo-',fname) > 0) {
 col_headers =

c('verdict','score','date_epoch','datetime','emptycol','message');
 } else {
 #It isn't one of the expected files, so skip it
 col_headers = Null;#or is that next();?
 }
 }
 }
 }
 if (is.null(col_headers)) {
 print(paste('get_col_headers did not properly handle file named',fname));
 }

 #The result of the last line in a function is that function's return value
 list(col_headers,skiplines);
}

print('Starting so-graphs.R ');
#Just change to the directory with the files so that image handling is pathless
oldpath = getwd();
workingpath_fallfiles = 'C:/data/ThesisFeb/';
workingpath_springfiles = 'C:/data/ThesisMar/';
workingpath_minfileset = 'C:/data/ThesisMinCSVSet';
workingpath = workingpath_springfiles;
if (log_set=='fall') {
 workingpath = workingpath_fallfiles;
} else {
 if (log_set == 'minset') {
 workingpath = workingpath_minfileset
 }
}
print(paste('Working path:',workingpath));
setwd(workingpath);

#Don't forget: list.files() takes a REGEX, NOT a GLOB.
filepath = '.';
filenames_fall = list.files(path='.', 'output-final_stage_sysout-files-11.*\\.csv');
#This is the normal one!#filenames = list.files(path='.', 'output-final_stage_sysout-files-

11.*.csv')
#filenames = list.files(path='.', 'output-final_stage_sysout-files-112.*.csv')
#filenames = list.files(path='.', 'output-final_stage_sysout-files-11.*-sb-c.*.csv')
#filenames = list.files(path='.', 'output-final_stage_sysout-files-11.*\\.scrubbed.csv')
#filenames = list.files(path='.', 'output-final_stage_sysout-files-11.*avg.csv')
filenames_spring = list.files(path='.', 'syslog.*scrubbed.*csv');
filenames_minfileset = list.files(path='.', '.*scrubbed\\.csv');
filenames = filenames_spring;
if (log_set == 'fall') {
 filenames = filenames_fall;
} else {
 if (log_set == 'minset') {
 filenames = filenames_minfileset;

www.manaraa.com

152

 }
}
#print(paste('Filespec:',filenames));

#print('-----1');
#print(length(filenames[]));

#eg
#New FamilySearch Site Down - 12 Nov 2010 - Outage: 18:48 - 19:28 -> 1289587680 through

1289590080

outage_dates = c('111210','111610','111810','112110')
#actual:
#outage_times = c(1289587680,1289920080,1290073740,1290359460)
#recalculated:
#outage_times + 7 hours -- it appears that the timestamps are being rolled to forward to UTC (+7

hours), even though they are already in UTC, so the abline must correct for this
outage_times_fall =

c(1289587680+utc_offset,1289920080+utc_offset,1290073740+utc_offset,1290359460+utc_offset)
#outage_times =

c(1289587680+utc_offset,1289920080+utc_offset,1290073740+utc_offset,1290359460+utc_offset)#129038[1-7]000
outage_times = c(1300487400,1300942980,1301072580,1301444220)

#####outages_app1 = c(1300487400,1300498200,1300942980,1300946340);
outages_app1 = c(1300487400,1300498200,1300942980,1300946340,1301072580,1301076660);
####outages_app2 = c(1301072580,1301076660,1301444220,1301445780);
outages_app2 = c(1301444220,1301445780);

for (fname in filenames) {
 print(paste('Processing file:',fname));
 if (regexpr('.png',fname) > 0) {
 next;
 }
 if (regexpr('.svg',fname) > 0) {
 next;
 }

 if (!file.exists(fname)) {
 print(paste('Specified file does not exist:',fname));
 next;
 }

 header_data = get_col_headers(fname);
 col_headers = header_data[1]
 skiprows = header_data[2]
 if (is.null(col_headers)) {
 next;
 }

 #TODO: remember that the lines in the files are not tab-separated except for the first 3

columns
 #-- the 3rd column is really just everything else

 #Read the file's data
 #fill=TRUE allows it to read lines that are not the right length -- unfortunately, that

means some rows might have bogus data in the later columns
 if (skiprows > 0) {
 print(paste('File (skiprows):',fname));
 allrows = read.table(fname, header=TRUE, sep='\t', na.strings='NA', dec='.',

strip.white=TRUE, blank.lines.skip=TRUE, fill=TRUE);
 } else {
 allrows = read.table(fname, header=FALSE, sep='\t', na.strings='NA', dec='.',

strip.white=TRUE, col.names=col_headers[[1]], blank.lines.skip=TRUE, fill=TRUE);
 }

 if (skiprows > 0) {
 allrows$score = as.double(allrows$score_mean);
 }
 else {

www.manaraa.com

153

 allrows$score = as.double(allrows$score);
 }
 #The epoch time for March records was incorrectly converted offset to UTF a second time

(when it was parsed from the date field), so undo that mistake
 if (log_set == 'spring') {
 #print(paste("Correcting date_epoch for allrows$date_epoch;

avg:",mean(allrows$date_epoch)));
 allrows$date_epoch = allrows$date_epoch-utc_offset
 #print(paste("Corrected date_epoch for allrows$date_epoch;

avg:",mean(allrows$date_epoch)));
 }

 #Generate graph from full set
 print(paste('Generating graph from full data set with',length(allrows$score),'rows'));
 pngname = paste(fname,'-allrows-','.png',sep='');
 if (length(grep('app1', fname)) >=1) {
 #print(outages_app1);
 outage_times = outages_app1;
 } else {
 if (length(grep('app2', fname)) >= 1) {
 #print(outages_app2);
 outage_times = outages_app2;
 } else {
 outage_times = outage_times_fall;
 }
 }
 generate_graph(pngname, allrows, outage_times, fname, FALSE);

 #Generate graph with jitter
 pngname = paste(fname,'-allrows-jitter-','.png',sep='');
 if (length(grep('app1', fname)) >=1) {
 print(outages_app1);
 outage_times = outages_app1;
 } else {
 if (length(grep('app2', fname)) >= 1) {
 print(outages_app2);
 outage_times = outages_app2;
 } else {
 outage_times = outage_times_fall;
 }
 }
 generate_graph(pngname, allrows, outage_times, fname, TRUE);

}
#[1] '***Processing file: output-final_stage_sysout-files-111210-big-sa-c2-n.scrubbed.csv'
#[1] 'Generating graph from full data set with 39765 rows'
#[1] 'Generated .png file: output-final_stage_sysout-files-111210-big-sa-c2-n.scrubbed.csv-

allrows-.png'
#[1] 'Generating graph from spam-scored data set with 0 rows'
#[1] 'Generated .png file: output-final_stage_sysout-files-111210-big-sa-c2-n.scrubbed.csv-

above3.0-.png'
#Error in plot.window(...) : need finite 'xlim' values
#Calls: generate_graph ... vbox -> plot -> plot.default -> localWindow -> plot.window
#In addition: There were 25 warnings (use warnings() to see them)
#Execution halted
warnings()

	Naive Bayesian Spam Filters for Log File Analysis
	BYU ScholarsArchive Citation

	TitlePage
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Log Analysis – Research Question
	1.2 Bayesian Classifiers
	1.3 Research Focus and Limitations

	2 Literature Review
	2.1 Logging
	2.1.1 Log Files
	2.1.2 Syslog
	2.1.2.1 PRI
	2.1.2.2 Header
	2.1.2.3 MSG
	2.1.2.4 Network Transport

	2.2 Syslog Analysis
	2.2.1 Background Research
	2.2.2 Syslog Analysis Tools and Products

	2.3 Spam Control
	2.3.1 Bayesian Spam Filtering
	2.3.2 SpamAssassin
	2.3.3 SpamBayes
	2.3.4 Bogofilter

	2.4 Summary

	3 Methodology
	3.1 Spam and Log Data Sources
	3.2 Textual Analysis Methods and Clustering of Textual Data
	3.2.1 Bayesian Filtering for Clustering
	3.2.1.1 Spam Abatement Tools Using Bayesian Filters
	3.2.1.1.1 SpamAssassin
	3.2.1.1.2 SpamBayes
	3.2.1.1.3 Bogofilter

	3.3 Bayesian Filter Effectiveness Testing
	3.3.1 SpamAssassin Corpus Testing
	3.3.2 Contrived Short Entry Testing
	3.3.3 Controlled Log Entry Testing
	3.3.4 Full Log Entry Testing

	3.4 Analysis of Comparisons and Correlation of Full Log Entry Tests with Monitoring Outage Data

	4 Research Results
	4.1 SpamAssassin Corpus Testing
	4.1.1 Contrived Log Entry Testing
	4.1.2 Actual Log Entry Testing and Outage Record Comparison
	4.1.2.1 Spring Outage Syslog Analysis
	4.1.2.2 Spring outage actual scored log entries
	4.1.2.3 Fall Outage Applicaton Log Analysis

	4.1.3 Research Results Summation

	5 Summary and Future Work
	5.1 Motivation
	5.2 Work Summary
	5.3 Recommendations and Future Work

	References
	Appendix. Program Code and templates
	Spam Testing Programs and Scripts
	shtrim.py
	shtrim.body.template.txt
	shtrim.header.template.txt
	stestgen.py
	gen-altered-list.py
	train_sabs1.sh
	train_sah1.sh
	train_sab1.sh
	train_safull1.sh
	test_sa1.sh
	runset.sh
	data_normalizer.py
	fourthrun-analysis.R
	randlines.py
	l_train.py
	l_test.py
	l_salib.py
	l_check_common.py
	l_runtest.sh
	matchrate.py
	so-graphs.R

